-5.E. (Mech) (CB) (R-2020-21) ( rScheme) sem -IV

University of Mumbai

Examinations Summer 2022
Program: Mechanical Engineering
Examination: SE Semester IV
Course Code: 41223 and Course Name: Kinematics of Machinery
1 T01434 / / S.E.(Mechanical) Engineering)(SEM-IV)(Choice Base Credit Grading System ) ((R-19)
(C Scheme)
Time: 2 hour 30 minutes
Max. Marks: 80


| Option C: | Distribution of mass |
| :---: | :---: |
| Option D: | Mass of an object |
| 7. | The power transmitted by a belt is maximum when the maximum tension in the belt ( T ) is equal to |
| Option A: | $3 \mathrm{~T}_{\mathrm{C}}$ |
| Option B: | ${ }^{2} \mathrm{~T}_{\mathrm{C}}$ |
| Option C: | (1/3) TC |
| Option D: | $4 \mathrm{~T}_{\mathrm{C}}$ |
| 8. | In a Davis steering mechanism the distance between pivot of front axle (b) 120 cm , and the length of wheel base is (1) 260 cm . When the vehicle moving straight path the angle of $(\alpha)$ inclination of track arm to the vertical is ------.--- degree. |
| Option A: | 21.99 - |
| Option B: | 32.81 |
| Option C: | 12.99 |
| Option D: | 19.33 |
| 9. | Chordal action in chain |
| Option A: | Changes the velocity ratio |
| Option B: | Increases overall length of chain |
| Cption C: | Decreases overall length of chain |
| Option D: | Changes the center distance between sprockets |
| 10. | A gear wheel turning at 20 radians per second is in mesh with pinion turning at double the speed of wheel. If the length of path of approach is 10 mm , what will be the sliding velocity at pitch point? |
| Option A: | $600 \mathrm{~mm} / \mathrm{s}$, |
| Option B: | $60 \mathrm{~mm} / \mathrm{s}$ |
| Option C: | $6 \mathrm{~mm} / \mathrm{s}$ |
| Option D: | 0 |


| Q2. | Solve any Four out of Six <br> A |
| :---: | :--- |
| Explain elliptical trammel |  |
| C | Compare Cycloidal and involute tooth forms. |
| D | Derive the expression for open belt drive <br> Describe the procedure to draw velocity and acceleration diagrams of a <br> four-link mechanism. |
| E | Explain double block or shoe brake with a neat sketch. |
| F | Classify various types of CAM and follower |
| Q3 | Solve any Two Questions out of Three |
| A | The following data relate to knife edge follower. Minimum radius of CAM <br> 45 mm Lift of follower 40 mm Angle of ascent $60^{\circ}$ angle of descent $120^{\circ}$ <br> angle of dwell for the follower in the highest position 90 <br> displacement. velocity acceleration plot if the ascent and descent motion of <br> the CAM is Simple Harmonic Motion. |
| B | An open beit running over two pulleys 240 mm \& 600 mm diameter connects <br> two parallel shafts 3 m apart \& transmits 5 kW frum the smaller pulley that <br> rotates at 400 rpm coefficient of friction is $0.3 \&$ the safe working tension is 10 <br> N per mm width, Determine-i) Min width of the belt, ii) Initial belt tension, iii) <br> Lengeth of the belt required. |


| C | In a reverted epicyclic gear train, the arm A carries two gears B and C and a <br> compound gear D - E. The gear B meshes with gear E and the gear C meshes <br> with gear D. The number of teeth on gears $\mathrm{B}, \mathrm{C}$ and D are 75,30 and 90 <br> respectively. Find the speed and direction of gear C when gear B is fixed and <br> the arm A makes 100 r.p.m. clockwise. |
| :---: | :--- |


| $\begin{gathered} \hline \text { Q4. } \\ \text { (20 Marks) } \end{gathered}$ | Solve any Two 5 marks each |
| :---: | :---: |
| A | What are centripetal and tangential components of acceleration? When do they occur? How are they determined? |
| B | Derive the equation for centrifugal tension |
| C | Explain successfully constrained motion with sketches of examples. |
|  | Solve any any One 10 Marks each |
| A | Two nuating gears have $40 \& 60$ involute teeth of module $10 \mathrm{~mm} \& 20^{9}$ pressure angle. The addendum on each wheel is to be made of such a length that the line of contact on each side of the pitch point has half the maximum possible length. Determine the a) addendum height for each gear wheel, b) length of path of contact, \& arc of contact \& c) contact ratio. |
| B | The dimensions of a mechanism as shown in the figure are as follows: $\mathrm{AB}=0.45 \mathrm{~m}, \mathrm{BD}=1.5 \mathrm{~m}, \mathrm{BC}=\mathrm{CE}=0.9 \mathrm{~m}$. <br> The crank AB turns uniformly at 180 rpm in the clockwise direction and the blocks at $D$ and $E$ are working in frictionless guides. Draw the velocity diagram for the mechanism and find the velocities of the sliders D and E in their guides using relative velocity method. |

## Compose

Mail


