Paper / Subject Code: 32207 / Elective - I Finite Automata Theory

T.E. (EXTC) (Sem-V) (CB)

Deute -27/11/19

	(3 Hours) Total Mar	ks: 80
Note t 1. 2. 3. 4. 5.	he following instructions. Question No.1 is compulsory Attempt any three questions from remaining five questions Solve in total 4 questions Assume suitable data wherever necessary, justify the same Figures to the right indicate full marks.	
1. a	Identify the following function is symmetric and expressed it. $f(x, y, z) = \sum (1, 2, 4, 7)$	[5]
1.b	What are the merits and limitations of Threshold gates?	[5]
1.c	What is the procedure of state minimization using merger methods?	[5]
1.d	Differentiate between Mealy and Moor type state machine.	[5]
2.a	Use the Quine–McCluskey method to obtain the minimal expressions for the following functions. $T(v, w, x, y, z) = \sum (0,1,2,8,9,15,17,21,24,25,27,31)$	[10]
2.b	Explain the synthesis procedure with suitable example for the design of fundamental-mode asynchronous sequential circuits.	[10]
3.a	Use the map method to generate all prime implicants and indicate which are essential; and obtain the minimal expressions for the following functions. $T(w, x, y, z) = \sum_{i=1}^{n} (0,1,2,3,4,6,7,8,9,11,15)$	[10]
3.b	Explain the basic principle of one dimensional path sensitization method.	[06]
3.c 4.a	Discuss Possible strategies in Fault Tolerant Design Show that threshold logic realization of Full Adder requires only two threshold elements.(Note that both sum and carry must be generated)	[04] [10]
4.b	Design a modulo 8-binary counter uing T flip-flops.	[10]
5. a	Find the fault table for all stuck-at faults of the following circuit $x_1 \xrightarrow{(1)}{x_2} \xrightarrow{(2)}{(2)} \xrightarrow{(4)}{(5)} = x_1 x_2 + x_3$	[10]
5.b	Explain in details, how to identify unknown sequential machine experimentally?	[10]
6. a	Explain the lattice of closed partitions of machine.	[10]
6. b	Draw and explian the ASM chart for a 2-bit inary counter.	[10]

77313

6411BAACBDB111F71B9C4DB43E940E26