T0121 - F.E.(SEM I)(ALL BRANCHES) (CBSGS) Applied Mathematics - I.

Q. P. Code: 27175

(3 hours) Total Marks: 80

- N.B. (1) Question no. 1 is Compulsory
 - (2) Solve any three from the remaining.

Q.(1)(a) If
$$5 \sinh x - \cosh x = 5$$
 find $\tanh x$.

(b) If
$$u = e^{x^2 + y^2 + z^2}$$
 prove that $\frac{\partial^3 u}{\partial x \partial y \partial z} = 8xyzu$. (3)

(c) If
$$u = \frac{x+y}{1-xy}$$
, $v = \tan^{-1} x + \tan^{-1} y$ find $\frac{\partial (u,v)}{\partial (x,y)}$, (3)

(d) By Maclaurins series expand
$$\log (1 + e^x)$$
 in powers of x upto x^4 . (3)

(e) Show that the matrix
$$A = \frac{1}{2} \begin{bmatrix} \sqrt{2} & -i\sqrt{2} & 0 \\ i\sqrt{2} & -\sqrt{2} & 0 \\ 0 & 0 & 2 \end{bmatrix}$$
 is unitary and hence find A^{-1} (4)

(f) Find the
$$n^{th}$$
 derivative of $y = \frac{x^2}{(x+2)(2x+3)}$ of (4)

- Q.2) (a) Solve $x^5 = 1 + i$ and find the continued product of the roots. (6)
 - (b) Find the nonsingular matrices P and Q such that PAQ is in normal form also (6)

find the rank of A, where
$$A = \begin{bmatrix} 2 & 1 & 4 \\ 3 & 2 & 2 \\ 7 & 4 & 10 \\ 1 & 0 & 6 \end{bmatrix}$$

- (e) State and prove Euler's theorem for homogeneous functions on three variables. (8)
- Q.3) (a) Investigate for what values of λ and μ the equations (6)

$$x + y + z = 6$$
, $x + 2y + 3z = 10$, $x + 2y + \lambda z = \mu$ have i) no solutions. (6)

- ii) a unique solution. iii) infinite number of solutions.
- (b) Find the stationary values of $f(x, y) = x^3 + xy^2 + 21x 12x^2 2y^2$ (6)
- (c) If $\sin(\theta + i\phi) = \cos\alpha + i\sin\alpha$ Prove that $\cos^4\theta = \sin^2\alpha = \sinh^4\phi$ (8)

(6)

Q.4) (a) If
$$z = e^{x/y} + \log(x^3 + y^3 - x^2y - xy^2)$$
 find the value of (6)

$$x\frac{\partial z}{\partial x} + y\frac{\partial z}{\partial y} + x^2\frac{\partial^2 z}{\partial x^2} + 2xy\frac{\partial^2 z}{\partial x \partial y} + y^2\frac{\partial^2 z}{\partial y^2}.$$

(b) Show that
$$\tan^{-1} i \left(\frac{x-a}{x+a} \right) = \frac{i}{2} \log \frac{x}{a}$$
 (6)

$$2x + 3y + 4z = 11$$

(c) Solve the following equations by Gauss Jordan Method x + 5y + 7z = 1

$$3x + 11y + 13z = 25 \tag{8}$$

Q.5) (a) Find the value of a,b,c so that
$$\lim_{x \to 0} \frac{ae^x - b\cos x + ce^{-x}}{x\sin x} = 2$$
 (6)

(b) Expand
$$\log (1 + x + x^2 + x^3)$$
 upto x^8 (6).

(c) If
$$y = \cos(m \sin^{-1} x)$$
 Prove that $(1 - x^2) y_{n+2} - (2n+1) x y_{n+1} + (m^2 - n^2) y_n = 0$ (8)

Q.6) (a) Find a,b,c if A is orthogonal where
$$A = \frac{1}{9} \begin{bmatrix} -8 & 4 & a \\ 1 & 4 & b \\ 4 & 7 & c \end{bmatrix}$$
 (6)

(b) Fit a second degree curve to the following data

3	x			2	3	4
3	3 0000	1.0	1.8	1.3	2.5	6.3

(c) If
$$x^x y^y z^z = c$$
 show that the value of $\frac{\partial^2 z}{\partial x^2} - 2xy \frac{\partial^2 z}{\partial x \partial y} + \frac{\partial^2 z}{\partial y^2} = \frac{2(x^2 - 2)}{x(1 + \log x)}$, at $x = y = z$ (8)