Paper / Subject Code: 51601 / Applied Mathematics-III

Duration: 3hrs

[Max Marks:80]

N.B.: (1) Question No 1 is Compulsory.

- (2) Attempt any three questions out of the remaining five.
- (3) All questions carry equal marks.
- (4) Assume suitable data, if required and state it clearly.

[20

a Obtain
$$L\{f(3t)\}\$$
if $L\{f(t)\}=\frac{s^2-2s+7}{(s^3+5s^2-s+3)}$ [05]

b Obtain the Fourier series of
$$f(x) = x$$
, $-2 \le x \le 2$ [05]

c Find a, b, c, d if
$$f(z) = (ax^3 + bxy^2 + x) + i(3x^2y + cy^3 + dy)$$
 is analytic. [05]

d For the regression lines
$$2x - y + 5 = 0$$
 and $3y - x + 7 = 0$ find
(i) the means of x and y and (ii) correlation coefficient r

2 a Find:
$$L^{-1}\left\{\frac{s}{(s^2+9)(s^2+1)}\right\}$$
 using convolution theorem. [06]

b Solve using Bender-Schmidt method:
$$\frac{\partial^2 u}{\partial x^2} - \frac{\partial u}{\partial t} = 0$$
; subject to the conditions: $u(0,t) = 0$; $u(3,t) = 0$; $u(x,0) = x^2(9-x^2)$

taking h = 1 upto 2 seconds

Find orthogonal trajectories of
$$x^2 - y^2 - 2xy = c$$
 [08]

3 a Find the Complex form of Fourier series for
$$f(x) = e^x \text{in } (0, 2\pi)$$
 [06]

b Obtain the Laurent's series for
$$f(z) = \frac{1}{(z+1)(z-4)} \text{ in } 1 < |z+1| < 3$$
 [06]

Obtain
(i)
$$L\{e^t cos 2t\}$$
 (ii) $L\{\int_0^t cos^2 2t \ dt\}$

12830

Paper / Subject Code: 51601 / Applied Mathematics-III

- 4 a Find: $L^{-1}\left\{\frac{s+2}{c^2-4s+5}\right\}$ [06]
 - b Fit a straight line to the following data by the method of least squares where Y is [06] the dependent variable:

X	1501	1	2	3	4	5	6
Y	O,	11.7	14.6	13.2	15.4.	16.8	15.8

- c Evaluate $\int_C \frac{1}{(z-1)(z-5)} dz$ where C is the circle |z| = 2
- 5 a Find an analytic function whose real part is cos2xcosh2y [06]
 - b Solve using Crank-Nicolson formula: [06]

$$\frac{\partial^2 u}{\partial x^2} - 16 \frac{\partial u}{\partial t} = 0$$
, $0 \le x \le 1$; subject to the conditions:

$$u(0,t) = 0; u(1,t) = 0; u(x,0) = 100 x (1-x)$$
 taking

h = 0.25 for one step

- C Obtain the Half Range Fourier Cosine Series of [08] $f(x) = x, 0 \le x \le 2 \text{ and deduce that } \frac{\pi^4}{96} = \frac{1}{1^4} + \frac{1}{3^4} + \frac{1}{5^4} + \dots$
- 6 a Obtain the Spearman's rank correlation coefficient of the following marks in Subjects X and Y:

X		18	14	18	12	6	91	71	26
Y	26	15	20	16	10	SB	10	15	2007

b Obtain the Bilinear transformation that transforms the points z = 1,2,0 [06]

respectively to the points $w = 1, \infty, 2$

c Evaluate $\int_0^{2\pi} \frac{d\theta}{2 + \cos \theta}$ [08]

12830