Paper / Subject Code: 51203 / Digital System Design

Q. P. Code: 27582

		(3 Hours) 80	Marks
N.B.:	(1)	Question No. 1 is compulsory.	
	(2)	Solve any three questions from the remaining five	
	(3)	Figures to the right indicate full marks	
	(4) Assume suitable data if necessary and mention the same in answer sheet.		
Q.1	i) ii Co b) If Po c) Co	erform the following operation using 2's compliment $(14)_{10} - (24)_{10}$ $(24)_{10} - (14)_{10}$ omment on results of (i) and (ii) $F(A,B,C) = \sum m(0,3,5,7)$ with its truth table and express F in SOP and OS form ompare FPGA and CPLD.	[20]
Q.2	a) W b) M	Explain Static RAM Trite VHDL code for 3 bit up counter. Sinimize the following expression using Quine McClusky Technique $(A, B, C, D) = \sum m(1,3,7,9,10,11,13,15)$	[10] [10]
Q.3		esign 3 bit Binary to Gray code Converter aw and explain a neat circuit diagram of BCD adder	[10] [10]
Q.4	b) Co	raw and explain two input TTL NAND gate. ompare combinational circuits and sequential circuits plain Full Adder circuit using PLA having three inputs, 8 product terms and two outputs.	[5] [5] [10]
Q.5	b). Co	That is excitation table? Explain the excitation table of SR flip flop. convert D flip flop to T flip flop. Taw and explain 3 bit asynchronous binary counter using positive edge aggered JK flip flop. Draw the waveforms.	[5] [5] e [10]
Q.6	F(b) Stac) W	plement following Boolean function using 8:1 multiplexer $(A, B, C, D) = \overline{ABD} + ACD + \overline{BCD} + \overline{ACD}$ ate and prove Demorgan's theorem that are shift registers? How are they classified? Explain working of any	[6] [4] 7 [10]
1675		ne type of shift register.	
