Time: 3 Hours

Marks: 80

No	ote		
	•	Question No.1 is compulsory.	
	•	Solve ANY THREE questions from the remaining five questions.	
	•	Figure to the right indicates full marks.	7
	•	Assume suitable data wherever required, but justify the same.	
			Mark
Q. 1		Solve ANY FOUR questions from following. (Each question carries 5 marks)	
	a)	Explain Gyroscopic Vibration absorbers.	(5)
	b)	Compare vibration isolator and vibration absorber.	(5)
	c)	Explain the significance and limitations of active vibration control (AVC) over	(5)
		passive vibration control (PVC).	
	d)	Discuss need and basic scheme of Adaptive Vibration Absorber.	(5)
	e)	Discuss Skyhook damping.	(5)
	f)	Discuss Resonance Detuning and Decoupling.	
Q. 2	a)	The seat of a automobile, with the driver, weighs 1000 N and is found to have a	(10)
	150	static deflection of 12 mm under self-weight. The vibration of the rotor is	
		transmitted to the base of the seat as harmonic motion with frequency 5 Hz and	
		amplitude 0.4 mm.	
		a. What is the level of vibration felt by the pilot?	
		b. How can the seat be redesigned to reduce the effect of vibration?	
06F)	b)	Explain in detail Optimum design of Damped absorbers.	(10)
Q. 3	a)	Discuss the transmissibility characteristics of different types of isolators.	(10)
	b)	Write a note on actuators and sensors for active vibration control (AVC).	(10)
Q. 4	a)	Discuss ground hook control method for Semi-Active tuned vibration absorber	(10)
		(SATVA).	
20			

b) A structure supporting a rotating machine is found to vibrate excessively at an excitation frequency of 18 Hz. It is proposed to attach a vibration neutralizer tuned to this frequency. What should be the mass and stiffness of the neutralizer so that the resulting two natural frequencies are at least 20% away from the excitation frequency? The supporting structure has an effective mass of 1000 kg and a natural frequency of 16 Hz.

- Q. 5 a) Derive the stiffness of single acting air spring. (10)
 - b) Discuss Quarter-Car model of a Vehicle Suspension. (10)
- Q. 6 a) Write a short note on Magnetorheological (MR) fluids and explain its different (10) models in dampers.
 - b) Discuss Adaptive Passive Vibration Absorber (APVA) and explain its methods in detail.

-----XX------XX-------XX-------