University of Mumbai

Examinations Commencing from 1st June 2022 to 15th June 2022 Program: Mechanical Engineering Curriculum Scheme: **REV- 2019 'C' Scheme** Examination: BE Semester V

Course Code: MEDLO5011 and Course Name: Optimization Techniques

Duration: 3 hour

Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks 2 marks each
1.	In simplex, maximization problem is optimal when all $(Cj - 7j)$ values are
Option A:	Either zero or negative
Option B:	Either zero or positive
Option C:	Only positive
Option D:	Only negative
2.	Objective function of a linear programming problem is
Option A:	a constraint
Option B:	function to be optimized
Option C:	A relation between the variables
Option D:	None of these
3.	A set of values of decision variables which satisfies the linear constraints and nn- negativity conditions of a L.P.P. is called its
Option A:	Unbounded solution
Option B:	Optimum solution
Option C:	Feasible solution
Option D:	None of these
4.	The maximum value of the object function $Z = 5x + 10$ y subject to the constraints $x + 2y \le 120$, $x + y \ge 60$, $x - 2y \ge 0$, $x \ge 0$, $y \ge 0$ is
Option A:	600
Option B:	300
Option C:	400
Option D:	800
5.	The maximum value of $Z = 4x + 2y$ subject to the constraints $2x + 3y \le 18$, $x + y \ge 10$, x, $y \le 0$ is
Option A:	36
Option B:	40
Option C:	30
Option D:	None of these
6.	The signal power and noise power are indicated by S & N respectively. If the
	signal power increases to 2S and the noise power reduce by half. The ratio of the
	old SNR to the new SNR is given by
Option A:	1/4
Option B:	1/6
Option C:	6
Option D:	2/3

7.	In which method of MADM, each attribute is given a weight & sum of all weight
	must be equal to 1.
Option A:	SAW
Option B:	WPM
Option C:	ANP
Option D:	AHP
8.	In data normalization first decide the attribute is either beneficial or non beneficial. If beneficial then
Option A:	Put 1 at a place of maximum value and then divide that element to other elements in that colomn so division will be less than 1.
Option B:	Put 1 at a place of minimum value and then divide that element to other elements in that column so division will be less than 1.
Option C:	Put 1 at a place of maximum value and then divide that element to other elements in that colomn so division will be greater than 1.
Option D:	Put 1 at a place of minimum value and then divide that element to other elements in that column so division will be greater than 1.
9.	The Taguchi approach related to loss is:
Option A:	Loss as long as the part deviates from target
Option B:	Loss as long as the part stick to target
Option C:	Loss as long as the part cross the UCL.
Option D:	Loss as long as the part cross the LCL
10.	A production process makes parts for $10^{\pm 0.2}$ at a cost of Rs. 25/- each. Determine loss when part is made at 10.10
Option A:	7.25
Option B:	6.25
Option C:	5.25
Option D:	6.70

Q2,	Solve any Two Questions out of Three 10 marks each
Α	Find the maximum and minimum value of $y = 3x^5 - 5x^3$. At $x = 0$, $= 0$ x is a point of inflexion At $x = 1$, $= 30$ i.e. y is minimum at $x = 1$ At $x = -1$, $= -30 < 0$, y is maxi at $x = -1$
В	Show that the right circular cylinder of given surface (including its ends) and maximum volume is such that its height is equal to twice its radius.
С	Use dynamic programming technique to solve the following problem. Max $Z = X_1.X_2.X_3.X_4$ Subject to $X_1 + X_2 + X_3 + X_4 = 12$ $X_1, X_2, X_3, X_4 \ge 0$

.

r	장 (M. C. C. S. <u>2012) 2013</u>
Q3.	Solve any Two Questions out of Three 10 marks each
	Solve by simplex method following LP:
	Max. $Z = 50X1 + 80X2$ subjected to,
Δ.	$X_1 + 1.5X_2 \le 600$
A	$0.2X_1 + 0.2X_2 \le 100$
	$0.1X_2 \le 30, X_1, X_2 \ge 0.$
	Solve the following NLPP: Maximum $Z = 4x_1 + 6x_2 - 2x_1x_2 - 2x_2^2$
В	subjected to $x_1 + 2x_2 = 2$, $x_1, x_2 \ge 0$.
	- 2011년 1월 19일 - 11일 - 11일 - 11일 - 11 - 11일 - 11
C	Explain the concept of Sub-optimization and principle of optimality
C	with an example.
Q4.	Solve any Two Questions out of Three 10 marks each
A	Maximize: (y_1, y_2, y_3) , Subjected to, $y_1 + y_2 + y_3 = 10$ and $y_1, y_2, y_3 > 0$.
	A firm manufacture product A & B which pass through machining and
	finishing departments. Machining has 90 hours available: finishing can
	handle up to 72 hours of work. Manufacturing one product A requires 6
В	hours in machining and 3 hours in finishing. Each product B requires 3
	hours in machining and 6 hours in finishing. If profit is Rs. 120/- per
	product A and Rs. 90/- per product B. Determine the best combination
	of product A & B to realize profit of Rs. 2100.
С	What are the various applications of optimization problems?
Q5.	Solve any Two Questions out of Three 10 marks each
	Explain with the help of example, how optimization problems are
	classified based on:
Α	i) Single value objective function
	ii) Multi value objective function
	Use the Kuhn – Tucker condition to solve the following non-linear
p	programming problem: Maximize $Z = 2x_1 - x_1^2 + x_2$, subject to the
	constraints, $2x_1 + 3x_2 \le 6$,
	$2x_1 + x_2 \leq 4, x_1, x_2, \geq 0.$
	What do you understand by the term 'penalty' in a constrained
\mathbf{C}	multivariable optimization problem? Explain how it is used to optimize
	multidimensional nonlinear programming problems.