University of Mumbai

Examinations Commencing from $1^{\text {st }}$ June 2022 to $15^{\text {th }}$ June 2022
Program: Mechanical Engineering Curriculum Scheme: REV- 2019 ' C ' Scheme

Examination: BE Semester V
Course Code: MEDLO5011 and Course Name: Optimization Techniques

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks 2 marks each
1.	In simplex, maximization problem is optimal when all ($\mathrm{Cj}-7 \mathrm{j}$) values are
Option A:	Either zero or negative
Option B:	Either zero or positive
Option C:	Only positive
Option D:	Only negative
2.	Objective function of a linear programming problem is
Option A:	a constraint
Option B:	function to be optimized
Option C:	A relation between the variables
Option D:	Nonc of these
3.	A set of values of decision variables which satisfies the linear constraints and nnnegativity conditions of a L.P.P. is called its
Option A:	Unbounded solution
Option B:	Optimum solution
Option C:	Feasible solution
Option D:	None of these
4.	The maximum value of the object function $Z=5 x+10 y$ subject to the constraints $x+2 y \leq 120, x+y \geq 60, x-2 y \geq 0, x \geq 0, y \geq 0$ is
Option A:	600
Option B:	300
Option C:	400
Option D:	800
5.	The maximum value of $Z=4 x+2 y$ subject to the constraints $2 x+3 y \leq i 8, x+y$ $\geq 10, x, y \leq 0$ is
Option A:	36
Option B:	40
Option C:	30
Option D:	None of these
6.	The signal power and noise power are indicated by $\mathrm{S} \& \mathrm{~N}$ respectively. If the signal power increases to 2 S and the noise power reduce by half. The ratio of the old SNR to the new SNR is given by ...
Option A:	1/4
Option B:	1/6
Option C:	6
Option D:	2/3

7.	In which method of MADM, each attribute is given a weight \& sum of all weight must be equal to 1 .
Option A:	SAW
Option B:	WPM
Option C:	ANP
Option D:	AHP
8.	In data normalization first decide the attribute is either beneficial or non beneficial. If beneficial then...
Option A:	Put 1 at a place of maximum value and then divide that element to other elements in that colomn so division will be less than 1.
Option B:	Put 1 at a place of minimum value and then divide that element to other elements in that column so division will be less than 1.
Option C:	Put 1 at a place of maximum value and then divide that element to other elements in that colomn so division will be greater than 1.
Option D:	Put 1 at a place of minimum value and then divide that element to other elements in that column so division will be greater than 1 .
9.	The Taguchi approach related to loss is:
Option A:	Loss as long as the part deviates from target
Option B:	Loss as long as the part stick to target
Option C:	Loss as long as the part cross the UCL
Option D:	Loss as long as the part cross the LCL
10.	A production process makes parts for $10^{ \pm 0.2}$ at a cost of Rs. 25/- each. Determine loss when part is made at 10.10
Option A:	7.25
Option B:	6.25
Option C:	5.25
Option D:	6.70

Q2.	Solve any Two Questions out of Three 10 marks each
Find the maximum and minimum value of $y=3 x^{5}-5 x^{3}$. At $x=0,=0 x$ is a point of inflexion At $x=1,=30$ i.e. y is minimum at $x=1$ At $x=-1,=-30<0, y$ is maxi at $x=-1$	
	Show that the right circular cylinder of given surface (including its ends) and maximum volume is such that its height is equal to twice its radius.
C	Use dynamic programming technique to solve the following problem. niax $Z=X_{1} . X_{2} . X_{3} X_{4}$ Subject to $X_{1}+X_{2}+X_{3}+X_{4}=12$ $X_{1}, X_{2}, X_{3}, X_{4} \geq 0$

Q3.	Solve any Two Questions out of Three 10 marks each
A	Solve by simplex method following LP: Max. $Z=50 \mathrm{X} 1+80 \mathrm{X} 2$ subjected to, $X_{1}+1.5 X_{2} \leq 600$ $0.2 \mathrm{X}_{1}+0.2 \mathrm{X}_{2} \leq 100$ $0.1 \mathrm{X}_{2} \leq 30, \mathrm{X}_{1}, \mathrm{X}_{2} \geq 0$
B	Solve the following NLPP: Maximum $Z=4 x_{1}+6 x_{2}-2 x_{1} x_{2}-2 x^{2}{ }_{2}$ subjected to $x_{1}+2 x_{2}=2, x_{1}, x_{2} \geq 0$.
C	Explain the concept of Sub-optimization and principle of optimality with an example.
Q4.	Solve any Two Questions out of Three 10 marks each
A	Maximize: ($\mathrm{y}_{1} \cdot \mathrm{y}_{2} \cdot \mathrm{y}_{3}$), Subjected to, $\mathrm{y}_{1}+\mathrm{y}_{2}+\mathrm{y}_{3}=10$ and $\mathrm{y}_{1}, \mathrm{y}_{2}, \mathrm{y}_{3} \geq 0$.
B	A firm manufacture product A \& B which pass through machining and finishing departments. Machining has 90 hours available; finishing can handle up to 72 hours of work. Manufacturing one product A requires 6 hours in machining and 3 hours in finishing. Each product B requires 3 hours in machining and 6 hours in finishing. If profit is Rs. 120/- per product A and Rs. $90 /$ - per product B. Determine the best cornbination of product A \& B to realize profit of Rs. 2100.
C	What are the various applications of optimization problems?
Q5.	Solve any Two Questions out of Three 10 marks each
A	Explain with the help of example, how optimization problems are classified based on: i) Single value objective function ii) Multi value objective function
B	Use the Kuhn - Tucker condition to solve the following non-linear programming problem: Maximize $Z=2 x_{1}-x_{1}^{2}+x_{2}$, subject to the constraints, $2 \mathrm{x}_{1}+3 \mathrm{x}_{2} \leq 6$, $2 x_{1}+x_{2} \leq 4, x_{1}, x_{2}, \geq 0$
C	What do you understand by the term 'penalty' in a constrained multivariable optimization problem? Explain how it is used to optimize multidimensional nonlinear programming problems.

