Time: 3 hour Max. Marks: 80

## Note: 1) Question 1 is compulsory.

- 2) Attempt any 3 questions from Question 2 to Question 6
- 3) Figures to the right indicate full marks.

| Q1         | Attempt All questions                                                                                                                                       | Marks |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| a)         | If $A = \begin{bmatrix} -1 & 0 & 0 \\ 2 & -3 & 0 \\ 1 & 4 & 1 \end{bmatrix}$ then find the eigen values of $A^3$                                            | 5     |
| b)         | Find Laplace transform of $f(t) = te^t \cos 2t$                                                                                                             | 5     |
| c)         | Find the Fourier Series for $f(x) = x^2$ , where $x \in (-\pi, \pi)$                                                                                        | 5     |
| <b>d</b> ) | Determine the constant a, b, c, d if $f(z) = x^2 + 2axy + by^2 + i(dx^2 + 2cxy + y^2)$ is analytic.                                                         | 5     |
| Q2         | Sept Stiff Stiff Sept Sept Sept Sept Sept Sept Sept Sept                                                                                                    |       |
| a)         | A vector field $\overline{F}$ is given by $\overline{F} = (ysinz - sinx)i + (xsinz + 2yz)j + (xycosz + y^2)k$<br>Prove that $\overline{F}$ is irrotational. | 6     |
| <b>b</b> ) | Find the Eigen values and Eigen vectors of the matrix $A = \begin{bmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{bmatrix}$                               | 6     |
| <b>c</b> ) | Show that the function $u = \sin x \cosh y + 2\cos x \sinh y + x^2 - y^2 + 4xy$ satisfies Laplace's equation, also find analytic function.                  | 8     |

Q3

a) If 
$$\bar{F} = xye^{2z}i + xy^2coszj + x^2cosxyk$$
 find div $\bar{F}$  and curl $\bar{F}$ 

- b) Find an analytic function whose real part is  $u = y^3 3x^2y$ . Also find the corresponding imaginary part.
- Show that the matrix  $A = \begin{bmatrix} 3 & -1 & 1 \\ -1 & 3 & -1 \\ 1 & -1 & 3 \end{bmatrix}$  is diagonalizable and hence find the transforming matrix and diagonal matrix.

30631 Page **1** of **2** 

Q4

a) Find 
$$\nabla \phi$$
 at point  $(1, -2, -1)$ , where  $\phi = 4xz^2 + x^2yz$   
b) Evaluate  $\int_0^\infty e^{-2t} sin^3t \ dt$ , using Laplace transforms

C) Using Partial Fraction method find 
$$L^{-1}\left[\frac{s}{(s^2+1)(s^2+4)(s^2+9)}\right]$$

Q5

a) Find 
$$L\left\{t\sqrt{1+\sin t}\right\}$$

b) Consider the vector field 
$$\bar{F}$$
 on  $\mathbb{R}^3$  defined by 
$$\bar{F}(x,y,z) = y \,\hat{\imath} + (z\cos(yz) + x) \,\hat{\jmath} + (y\cos(yz)) \,\hat{k}$$
 Show that  $\bar{F}$  is conservative.

Find the Fourier Series for 
$$f(x)$$
 in  $(-\pi, \pi)$  where
$$f(x) = 1 + \frac{2x}{\pi} - \pi \le x \le 0$$

$$= 1 - \frac{2x}{\pi} \quad 0 \le x \le \pi$$

Hence deduce that 
$$\frac{\pi^2}{8} = \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots$$

**Q6** 

a) Obtain Fourier series expansion of 
$$f(x) = 9 - x^2$$
 in  $(0, 2\pi)$ 

b) Find Eigen values and Eigen vectors of 
$$A = \begin{bmatrix} 4 & 6 & 6 \\ 1 & 3 & 2 \\ -1 & -5 & -2 \end{bmatrix}$$

c) i) Find 
$$L^{-1}\left\{\log\left(\sqrt{\frac{(s+a)}{(s+b)}}\right)\right\}$$

ii) Find 
$$L^{-1}\left\{\frac{1}{s^2-2s+5}\right\}$$

30631