N.B. :1) Question no. 1 is compulsory
2) Answer any 3 questions from remaining five questions

Q1 Answer any four questions
a. What are the three axioms of probability?
b. Define central limit theorem. What is the significance of central limit theorem?
c. A continuous random variable x that can assume any value between $x=2$ and x
$=5$ has a density function given by $f(x)=k(1+x)$. Find $P(X<4)$
d. Define SSS process. How it is different from WSS? 05
e. Define autocorrelation function and state its properties 05

Q2 a. In a binary Symmetric channel, the probability that a transmitted ' 0 ' is received 10 as ' 0 ' is 0.9 and the probability that a transmitted ' 1 ' is received as ' 1 ' is 0.95 . If the probability that a ' 0 ' is transmitted is 0.55 , find
i) The probability that a ' 1 'was transmitted given that a ' 1 ' was received.
ii) The probability that a ' 0 'was transmitted given that a ' 0 ' was received.
iii) Error probability
b. i. Three balls are drawn at random without replacement from a box containing 2 white, 3 red and 4 black balls. If X denotes the number of white balls drawn and Y denotes the number of red balls drawn, find the joint probability distribution of (X,Y)
ii. State and Prove Bayes Theorem

Q3 a. The joint pdf of two dimensional RV (X, Y) is given by

$$
f(x, y)=x^{2}+\frac{x y}{3} ; 0 \leq x \leq 1,0 \leq y \leq 2 \text {. Find }
$$

i. $\quad \mathrm{P}(\mathrm{Y}<0.5 / \mathrm{X}<0.5)$
ii. Are x and y independent random variables?
b. State and prove Chebyshev inequality.

Q4 a. Derive the moment generating function for Poisson distribution. By using the
moment generating function, derive the mean and variance of Poisson distribution
b. If the joint pdf of (X, Y) is given by $f(x, y)=x+y ; 0 \leq x, y \leq 1$, find the pdf of $\mathrm{U}=\mathrm{XY}$
a. If the joint pdf of (X, Y) is given by $f(x, y)=24 y(1-x), 0 \leq y \leq x \leq 1$, Find $E(X Y) \quad \mathbf{1 0}$
b. Given a random process $\mathrm{x}(\mathrm{t})=\mathrm{A} \operatorname{Cos}(\omega \mathrm{t}+\Theta)$ where A and ω are constants and
a. Discuss the properties of linear time invariant system if input is a WSS process.
b. Find linear regression equation for the following two sets of data. Predict the output when input $x=7$. State any two applications of linear regression.

x	2	4	6	8
y	3	7	5	10

