(3 Hours)
[Total Marks : 80]
N.B.: 1) Question No. 1 is compulsory.
2) Attempt any THREE from question no. 2 to 6.
3) Use illustrative diagrams wherever possible.

Q1) Solve any Four :
a) What do you mean by Fouling in heat exchanger?
b) Differentiate between drop wise and film wise condensation.
c) Define thermal resistance, thermal conductance, thermal conductivity and thermal contact resistance.
d) Define shape factor and state its physical significance.
e) Explain hydrodynamic and thermal boundary layer.

Q2) a) Derive 3 dimensional conduction equation in Cartesian coordinates for a homogeneous material, steady state conditions and without heat generation.
b) A 100 mm diameter steam pipe is covered by two layers of lagging. The inside layer is 40 mm thick and has a thermal conductivity of $0.07 \mathrm{~W} / \mathrm{m} \mathrm{K}$. The outside layer is 25 mm thick and has a thermal conductivity of $0.1 \mathrm{~W} / \mathrm{m} \mathrm{K}$. The pipe carries steam at a pressure of $1.7 \mathrm{MN} / \mathrm{m}^{2}$ with $230{ }^{\circ} \mathrm{C}$ temperature. The outside temperature of lagging is $24^{\circ} \mathrm{C}$. If the steam pipe is 20 m long, determine (a) The heat lost per hour, (b) The interface temperature of lagging.

Neglect the resistance of the steam pipe.
c) Write a short note on 'Importance of numerical methods.'

Q3) a) Derive expression for temperature distribution and heat dissipation in a straight fin of rectangular profile for infinitely long fin.
b) 3000 kg of water is heated per hour from 30 to $70^{\circ} \mathrm{C}$ by pumping it through a certain heated section of a 25 mm diameter tube. If the surface of the heated section is maintained at $110^{\circ} \mathrm{C}$, estimate length of the heated section and the rate of heat transfer from the tube to water.

The thermo-physical properties of water are: $\rho=971.6 \mathrm{~kg} / \mathrm{m}^{3}$; $\mu=0.355 \times 10^{-3} \mathrm{~kg} / \mathrm{m}-\mathrm{s} ; \mathrm{k}=0.667 \mathrm{~W} / \mathrm{m}-\mathrm{deg} ; \mathrm{Cp}=4195 \mathrm{~J} / \mathrm{kg}-\mathrm{deg}$.

Use $\mathrm{Nu}=0.023(\mathrm{Re})^{0.8}(\mathrm{pr})^{0.4}$.
c) What is meant by critical thickness of insulation? Explain its significance.

Paper / Subject Code: 32603 / Heat Transfer

Q4) a) With the help of Buckingham π theorem show that for a forced convection $\mathrm{Nu}=\mathrm{C}(\operatorname{Re})^{\mathrm{mp}}(\operatorname{Pr})^{\mathrm{n}}$
b) A steel $\operatorname{rod}(\mathrm{k}=32 \mathrm{~W} / \mathrm{m} \mathrm{K}), 12 \mathrm{~mm}$ in diameter and 60 mm long with an insulated end is to be used as a spine. It is exposed to surrounding with a temperature of $60^{\circ} \mathrm{C}$ and heat transfer coefficient of $55 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$. The temperature at the base of fin is $95^{\circ} \mathrm{C}$. Determine (i) The fin efficiency, (ii) The temperature at the end of the spine, (iii) The heat dissipation.
c) What are the assumptions for lumped capacity analysis? at $0.076 \mathrm{~kg} / \mathrm{s}$. It is heated by oil $\left(\mathrm{C}_{\mathrm{p}}=1800 \mathrm{~J} / \mathrm{kg}{ }^{\circ} \mathrm{C}\right)$ flowing at the rate of 0.152 kg / s from an inlet temperature of $116^{\circ} \mathrm{C}$. For an area of $1 \mathrm{~m}^{2}$ and $\mathrm{U}=340$ $\mathrm{W} / \mathrm{m}^{2 \circ} \mathrm{C}$, determine the total heat transfer rate.

