## Paper / Subject Code: 51625 / Thermodynamics

**Duration: 3hrs** 

[Max Marks:80]

| N.F | 3. :       | (1) Question No 1 is Compulsory.                                                                                                                         | Dr.           |
|-----|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
|     |            | (2) Attempt any three questions out of the remaining five.                                                                                               |               |
|     |            | (3) All questions carry equal marks.                                                                                                                     |               |
|     |            | (4) Assume suitable data, if required and state it clearly.                                                                                              |               |
|     |            | (5) Use of steam table and Mollier Diagram is permitted.                                                                                                 |               |
|     |            | (e) est el steam tage una memor Bragiani is primitiva.                                                                                                   |               |
|     |            |                                                                                                                                                          |               |
| 1   |            | Attempt any Five                                                                                                                                         | [20]          |
|     | a)         | State Zeroth law of Thermodynamics and its significance.                                                                                                 |               |
|     | b)         | A gas undergoes a reversible non-flow process according to the relation $p =$                                                                            |               |
|     |            | (-3V + 15). Where V is the Volume in m <sup>3</sup> and p is the pressure in the bar.                                                                    | OL            |
|     |            | Determine the work done when the volume changes from 3 to 6 m <sup>3</sup> .                                                                             |               |
|     | c)         | What is meant by thermodynamic property? Define Extensive and Intensive                                                                                  |               |
|     |            | properties with examples.                                                                                                                                |               |
|     | d)         | Define Joule Thomson coefficient and state its significance.                                                                                             |               |
|     | (e)        | Draw P-V & T-S diagram for Stirling cycle and Ericsson cycle.                                                                                            |               |
|     | f)         | Explain the effect of varying back pressure on nozzle performance.                                                                                       |               |
| >   | `          | BC 2 1 2 M 12 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                | Γ1 Λ <b>1</b> |
| 2   | a)         | Define perpetual motion Machine second kind. Write two major statements of                                                                               | [10]          |
|     | No.        | second law of thermodynamics and explain how the concept of thermal                                                                                      |               |
|     | <b>b</b> ) | efficiency and coefficient of performance are generated by this law.  1kg of air at 1 bar and 300K is compressed adiabatically till its pressure becomes | [10]          |
|     | b)         |                                                                                                                                                          | [10]          |
|     |            | 5 times the original pressure. Subsequently it is expanded at constant pressure                                                                          |               |
|     |            | and finally cooled at constant volume to return to its original state. Calculate the                                                                     |               |
|     |            | heat and work interactions and change in internal energy for each process and                                                                            |               |
|     |            | for cycle. $Cp = 1.005KJ/kg K$ , $Cv = 0.718 KJ/kg K$                                                                                                    |               |
| 3   | a)         | A refrigerator operates on a reversed Carnot cycle whose coefficient of                                                                                  | [06]          |
|     | ,          | performance is 5. The evaporator is maintained at a temperature of -6°C and the                                                                          |               |
|     |            | power required to run the refrigerator is 3.5 kw. Determining the refrigerating                                                                          |               |
|     |            | effect and the condenser temperature of the refrigerator.                                                                                                |               |
|     | b)         | Write the Maxwell equation and Clapeyron Equation.                                                                                                       | [04]          |
|     | c)         | Define the terms Available energy, Un-available energy, useful work,                                                                                     | [10]          |
|     |            | irreversibility and Dead state.                                                                                                                          |               |
| 4   | 35         |                                                                                                                                                          | F0.61         |
| 4   | a)         | Explain various components of a simple steam power plant with sketch.                                                                                    | [06]          |
|     | ^ b)       | Define a) wet steam b) Superheated steam c) Dryness fraction d) Saturation                                                                               | [04]          |
|     | (۵         | temperature.                                                                                                                                             | [10]          |
|     | c)         | Write a short note on the Rankine cycle.                                                                                                                 | [10]          |
| 5   | a)         | What is cut off ratio? What are assumptions of air standard cycle? Derive an                                                                             | [10]          |
|     | aj         | expression for the air standard efficiency of Otto cycle.                                                                                                | [10]          |
|     |            | expression for the an standard efficiency of Otto cycle.                                                                                                 |               |
|     |            |                                                                                                                                                          |               |

## Paper / Subject Code: 51625 / Thermodynamics

|   | b) | What is Difference between Otto Cycle and Diesel Cycle. [10]                                                                     |  |  |
|---|----|----------------------------------------------------------------------------------------------------------------------------------|--|--|
|   |    | For same compression ratio compare Otto, Diesel                                                                                  |  |  |
|   |    | cycle with the help of P-V and T-S Diagram.                                                                                      |  |  |
| 6 | a) | Explain with sketch one dimensional Isentropic flow through ducts of varying [10] cross-sectional area and list is applications. |  |  |
|   | b) | How the Enthalpy, Specific Volume and Specific Entropy can be calculated for [10] the wet steam with the help of Steam Table.    |  |  |
|   |    |                                                                                                                                  |  |  |

\*\*\*\*\*\*