(3 Hours)

Total Marks: 80

Note:

- (1) Question No 1 is Compulsory.
- (2) Attempt any three questions out of the remaining five.
- (3) All questions carry equal marks.
- (4) Assume suitable data, if required, and state it clearly.
- 1 Attempt any FOUR

[20

- a In the evaluation of the expression $x^3 2.5x^2 + 3x 1.8$ at x = 1.183 Estimate the maximum error assuming that all decimals are subjected to maximum roundoff error.
- b Solve the following set of simultaneous equations using the Gauss-Seidel Method. The answer should be correct to one significant digit.

$$x + 10y - 4z = 6;$$

$$2x - 4y + 10z = -15;$$

$$9x + 2y + 4z = 20$$
.

- c Obtain root of the equation $-0.9x^2 + 1.7x + 2.5 = f(x)$ by using the bisection method for up to three iterations. Take initial guesses are: $x_1 = 2.8$ and $x_2 = 3$.
- d What is Fuzzy Logic? Explain Fuzzy logic Systems Architecture.
- e Solve $\frac{dy}{dx} = x y^2$, for the given boundary condition that at x = 0, y = 1 find y at x = 4, and take step size h = 1 using Euler's method up to 3 iterations.
- f Solve the heat conduction problem

$$\frac{\partial \mathbf{u}}{\partial \mathbf{t}} = \frac{\partial^2 \mathbf{u}}{\partial \mathbf{x}^2}$$

Subject to the conditions u(x, 0) = 0, u(0,t) = 0 and u(1,t) = t. Using Crank-Nicolson scheme find the value of u(1/2, 1/8) taking h = 1/4, l = 1/8. Compare the results obtained with the exact value of u(1/2, 1/8) = 0.01878

2 a Solve the following system of equations using the LU decomposition method:

$$2x + y + 4z = 12$$

$$8x - 3y + 2z = 20$$

$$4x + 11y - z = 33$$

b Obtain the line of regression for y on x for the data given below.

Г1	1	n	٦
	К	v	ч

X	1.53	1.78	2.6	2.95	3.42
$y_i = f(x_i)$	33.5	36.3	40	45.8	53.5

- 3 a Use the fixed point iteration method (Successive approximation method) to [10] determine the root of the following equation $f(x) = x^2 8x + 6 = 0$ with accuracy of 0.01
 - b With the help of the Gauss Elimination method find the solution to the following [10] system of linear equations.

$$2x + 4y - 6z = -4$$

$$x + 5y + 3z = 10$$

$$x + 3y + 2z = 5$$

4 a A set of values of x and y are given below using Newton's forward interpolation [10] formula, find y (1.105).

X	1	1.1	1.2	1.3	1.4	1.5	1.6
Y	0	0.331	0.728	1.207	1.744	2.375	3.096

- b Classify different types of errors on the basis of the source of their generation and also explain how these errors are going to propagate.
- 5 a Evaluate the integration $\int_0^{1.2} e^x dx$ taking n=6 using Simpson's 1/3 rule and Simpson's 3/8 rule
 - c Use the False position method to determine the roots of the equation xe^x cos3x 0.5=0. [10]

Two initial guess values being $x_0 = 0$ and $x_1 = 1$ with an accuracy of 0.01.

- 6 a Obtain the numerical solution of 1-Dimensional wave equation using Crank the [10] Nicolson method.
 - b The differential equation $y' = x^2 + y^2 2$ satisfies the following data:

x	- 0.1	0	0.1	0.2
У	1.0900	1.0000	0.8900	0.7605

Use Milne's method to obtain the value of y(0.3)

c Explain the term Significant figures. Round the following numbers to two decimal places. (i) 38.46235 (ii) 0.0029 (iii) 0.0022218

[05]
