Duration – 3 Hours

Total Marks: 80

6

- N.B 1) Question **No. 1** is **Compulsory**.
 - 2) **Answer** any **three** questions from remaining questions.
 - 3) Figures to the right indicate full marks.

Q.1 a) Evaluate
$$\int_0^\infty y^4 e^{-y^6} dy$$
.

- b) Find the circumference of a circle of radius r by using parametric equations of the circle $x = r\cos\theta$, $y = r\sin\theta$.
- c) Solve $(D^2 + D 6)y = e^{4x}$.
- d) Evaluate $\int_0^1 \int_{x^2}^x xy(x^2 + y^2) dy dx$.
- e) Solve $(tany + x)dx + (xsec^2y 3y)dy = 0$.
- f) Solve $\frac{dy}{dx} = 1 + xy$ with initial condition $x_0 = 0$, $y_0 = 0.2$ by Euler's method. Find the approximate value of y at x = 0.4 with h = 0.1.

Q.2 a) Solve
$$(D^2 - 4D + 3)y = e^x \cos 2x + x^2$$
.

- b) Show that $\int_0^\infty \frac{\tan^{-1}ax}{x(1+x^2)} dx = \frac{\pi}{2} \log(1+a)$.
- c) Change the order of integration and evaluate $\int_0^2 \int_{\frac{x^2}{2}}^{4-x} xy dy dx$. 8
- **Q.3** a) Evaluate $\iiint x^2yz \, dxdydz$ throughout the volume bounded by 6 the planes x = 0, y = 0, z = 0 and $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$.
 - b) Find the mass of lamina of a cardioid $r = a(1 + cos\theta)$. If the density at any point varies as the square of its distance from its axis of symmetry.
 - c) Solve $(3x+2)^2 \frac{d^2y}{dx^2} + 5(3x+2)\frac{dy}{dx} 3y = x^2 + x + 1$.

Q.4 a) Find by double integration the area common to the circles r = 6 $2\cos\theta$ and $r = 2\sin\theta$.

b) Solve
$$\sin 2x \frac{dy}{dx} = y + \tan x$$
.

- Solve $\frac{dy}{dx} = 3x + y^2$ with initial conditions $y_0 = 1$, **8** $x_0 = 0$ at at x=0.2 in steps of h=0.1 by Runge Kutta method of fourth order.
- Q.5 a) Evaluate $\int_0^1 x^5 \sin^{-1} x \, dx$ and find the value of $\beta\left(\frac{7}{2}, \frac{1}{2}\right)$.
 - b) The differential equation of a moving body opposed by a force **6** per unit mass of value cx and resistance per unit mass of value bv^2 where x and v are the displacement and velocity of the particle at that time is given by $v\frac{dv}{dx} = -cx bv^2$. Find the velocity of the particle in terms of x, if it starts from the rest.
 - c) Evaluate $\int_0^6 \frac{dx}{1+4x}$ by using i) Trapezoidal ii) Simpsons (1/3)rd 8 and iii) Simpsons (3/8)th rule.
- **Q.6** a) Find the volume of the region that lies under the paraboloid z = 6 $x^2 + y^2$ and above the triangle enclosed by the lines y = x, x = 0 and x + y = 2 in the xy plane.
 - b) Change to polar coordinates and evaluate $\int \int y^2 dx dy$ Over the area outside $x^2 + y^2 ax = 0$ and inside $x^2 + y^2 2ax = 0$.
 - Solve by method of variation of parameters $\frac{d^2y}{dx^2} + y = \frac{1}{1+\sin x}.$
