University of Mumbai Examination First Half 2022

Program: Electronics and Telecommunication Engineering

Curriculum Scheme: (R- 19) (C Scheme) Examination: TE Semester V

Course Code: ECC502 and Course Name: Discrete Time Signal Processing

Time: 2 hour 30 minutes Max. Marks: 80

61	Choose the correct option for following questions. All the Questions are		
Q1.	compulsory and carry equal marks		
1.	If discrete time signal x[n] is real with its N-point DFT as X(k), what is the DFT		
	x[-n]?		
Option A:	X(-k)		
Option B:	-X(k)		
Option C:	X(k)		
Option D:	NX(k)		
2.	An FIR filter which has the following property $ \angle H(0) - \angle H(\pi) = 0$ behaves like an		
Option A:	Maximum phase system		
Option B:	Minimum phase system		
Option C:	Mixed phase system		
Option D:	Zero phase system		
3.	The filter with difference equation $y(n) = x(n) + x(n-1)$ is defined as		
Option A:	FIR Low pass filter		
Option B:	FIR High Pass filter		
Option C:	IIR Low pass filter		
Option D:	IIR High Pass filter		
4.	Round off error for sign magnitude and 2's complement binary number		
	representation with b number of bits is given by		
Option A:	$-\left(\frac{2^{-b}}{2}\right) \le \epsilon_R \le \left(\frac{2^{-b}}{2}\right)$		
Option B:	$-(2^{-b}) \le \epsilon_R \le 0$		
Option C:	$-(2^{-b}) \le \epsilon_R \le 0$ $-(2^{-b}) \le \epsilon_R \le (2^{-b})$		
Option D:	$-(2^{+b}) \le \epsilon_R \le 0$		
5.	The magnitude response of Butterworth filter has		
Option A:	monotonous stop-band and pass-band with ripples		
Option B:	monotonous pass band and stop-band with ripples		
Option C:	monotonous stop band and monotonous pass band		
Option D:	pass-band with ripples and stop-band with ripples		
6.	Coefficient symmetry is important in FIR filters to provide		
Option A:	less stopband attenuation		
Option B:	less passband ripple		
Option C:	a smaller transition bandwidth		
Option D:	a linear phase response		
<u> </u>	1 1111		

7.	The DFT of discrete time sequence $x[n] = \delta[n]$	$+3\delta[n-1]-2\delta$	[n-2] +
	$4\delta[n-3]$ is		
Option A:	{6, -1+3j, 8, -1-3j}		
Option B:	{6, 1-3j, 8, 1+3j}		
Option C:	$\{6, 3-j, -8, 3+j\}$	3 2 203 3	
Option D:	{6, 3+j, -8, 3-j}		
8.	The abrupt spike present in EEG provides		
Option A:	Information about abnormal heart rate		
Option B:	Information about EEG rhythms		
Option C:	Information about epilepsy condition		
Option D:	Information about unconscious state of patient		
9.	The anti-symmetric linear phase filter is given b	y {1 -2 0 2 -1}. Wh	ich type of
	linear phase FIR filter is it?		
Option A:	Type 1		
Option B:	Type 2		
Option C:	Type 3		
Option D:	Type 4		
		1. 54 - M. A.	
10.	Parallel realization is useful for		
Option A:	reducing the number of multipliers and adders		
Option B:	high speed filtering operation		
Option C:	practical implementation of filter		
Option D:	achieving a better efficiency of the filter		

Q2	Solve any Two Questions out of Three 10 marks each		
	Find the DFT of sequence $x[n]=\{5, 2, 1, 3\}$. Using answer and not otherwise, Find		
A i) $x1[n]=\{5, -2, 1, -3\}$ ii) $x2[n]=\{2, 1, 3, 5\}$			
	iii) $x3[n]=\{5,3,1,2\}$		
l si	The desired response of the low pass filter is		
B	$H_d(e^{j\omega}) = \begin{cases} e^{-j2\omega} & -3\pi/4 \le \omega \le 3\pi/4 \\ 0 & Otherwise \end{cases}$		
	0 Otherwise		
	Design the filter using hamming window for M=5		
e .	Explain the concept of Lattice Ladder realization structure.		

Q3	Solve any Two Questions out of Three 10 marks each		
	Design a Butterworth low pass filter using Bilinear transformation for the		
	following constraints (Assume T=1sec):		
A	$0.85 \le H(e^{j\omega}) \le 1$ for $0 \le \omega \le 0.2\pi$		
	$ H(e^{j\omega} \le 0.2$ for $0.6\pi \le \omega \le \pi$		
В	Find the DFT of the following sequence using DIF-FFT		
	$x[n] = \{1, 2, 3, 4, 0, 0, 0, 0\}$		
	Draw the realization structure for following transfer function using parallel and		
	cascade form?		
C	$16z^{-2} + 8z^{-1} + 1$		
	$H(z) = \frac{16z^{-2} + 8z^{-1} + 1}{(4z^{-2} + 4z^{-1} + 1)(2z^{-1} + 1)}$		

Q4	Solve any Four out of Six	5 marks each
A	Explain overlap save method of linear filtering using DFT with neat diagram.	
В	Design a digital resonator for a frequency of 50 Hz.	
C	One of the zeros of an asymmetric linear phase FIR filter is at 0.5. Find the location of other zeros. Determine transfer function.	
D	Write a short note on DSP application for ECG signal.	
E	For analog transfer function $H(s) = \frac{1}{(s+1)(s+2)}$ Determine H(z) using impulse invariant method. Assu	
F	What is Quantization? Explain the different types of quantization error in FIR and IIR filtering?	