University of Mumbai Program: BE Information Technology SEM VII Curriculum Scheme: Rev2016

Examination: SE/TE/BE Semester VII

Course Code: ITDLO7033 and Course Name: High Performance Computing

Time: 2 hour 30 minutes _____

Max. Marks: 80 _____

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks		
1.	is the simultaneous use of multiple compute resources to solve a computational problem		
Option A:	parallel computing		
Option B:	Serial Computing		
Option C:	Parallel Computers		
Option D:	Parallel programming		
2.	Flynn's taxonomy distinguishes multi-processor computer architectures according to how they can be classified along the two independent dimensions of and		
Option A:	Single, Multiple		
Option B:	Instruction Stream, Data Stream		
Option C:	Data model, network model		
Option D:	Single Instruction, Multiple Data		
3.	Which of the following are not characteristics of Message Passing Model / Distributed Memory?		
Option A:	Data transfer usually requires cooperative operations to be performed by each process. For example, a send operation must have a matching receive operation		
Option B:	The shared memory component can be a shared memory machine and/or graphics processing units (GPU)		
Option C:	Tasks exchange data through communications by sending and receiving messages		
Option D:	A set of tasks that use their own local memory during computation. Multiple tasks can reside on the same physical machine and/or across an arbitrary number of machines.		
4.	refers to the practice of distributing approximately equal amounts of work among tasks so that all tasks are kept busy all of the time.		
Option A:	Load balancing		
Option B:	Data Dependencies		
Option C:	Granularity		
Option D:	Synchronization		
5.	send(void *sendbuf, int nelems, int dest) receive(void *recvbuf, int nelems, int source)		
	Find out the Incorrect statement from the given option.		
Option A:	sendbuf points to a buffer that stores the data to be sent		

1 | Page

Option B:	nelems is the number of data units to be sent and received	
Option C:	recvbuf points to a buffer that stores the data to be received	
Option D:	source is the identifier of the process that receives the data	
6.	To find out efficiency of a parallel program which formula we can use?	
Option A:	$T_o = pT_P - T_S.$	
Option B:	$S = \Theta\left(\frac{n}{\log n}\right).$	
Option C:	$E = \frac{1}{1 + \frac{2p(t_s + t_w n)}{9t_c n^2}}.$	
Option D:	$E = \frac{S}{p} = \frac{T_S}{pT_P}$	
7.	MPi provides the that allows us to partition a Cartesian topology into sub-topologies that form lower-dimensional grids.	
Option A:	keep_dims	
Option B:	MPI_Comm_split	
Option C:	MPI_Cart_sub function	
Option D:	comm_cart	
8.	$M_{0,p-1} = M_{1,p-1} = M_{p-1,-p-1} = M_{p-1,-} = M_{p-1,-} = M_{p-1,} = M_{p-1,} = M_{p-1,$	
	$M_{0,1} = M_{1,1} = M_{p+1,1} = M_{1,0} = M_{1,1} = M_{1,p+1}$	
	$M_{0,0} = M_{1,0} = M_{p-1,0} = M_{0,0} = M_{0,1} = M_{0,p-1}$	
	$\bigcirc (1) \cdots (p) \longleftarrow (1) \cdots (p)$	
	The above diagram represents an example of which generalization?	
Option A:	All-to-all broadcast	
Option B:	All-to-all personalized communication	
Option C:	all-to-all reduction	
Option D:	Scatter and gather operations	
9.	In some interactions, the data or work needed by a task or a subset of tasks is explicitly supplied by another task or subset of tasks. Such interactions are called interactions	
Option A:	regular	
Option B:	read-write	
Option C:	one-way	
Option D:	two-way	
10	Which of the following is not a part of Performance Metrics?	
Option A ⁺	Execution Time	
~Puonii.		

-

•

2 | Page

Option B:	overhead function
Option C:	Idling
Option D:	Speedup

Q2. (20 Marks)	Solve any Four out of Six 5 marks each
А	Explain the Pros and Cons of Open MP.
В	Explain all-to-all broadcast on hycube topologies.
С	Explain granularity of a parallel system?
D	Write a Short note on SIMD matrix multiplication.
Е	What is meant by grain packing and scheduling in parallel Processing.
F	Explain Image dithering example in Inter-Task Interactions

Q3 (20 Marks)	Solve any Two Questions out of Three	10 marks each
Α	Explain decomposition techniques with the help	of suitable example.
В	What are the Limitations of Memory System Per	formance?
С	Write a MPI program that will sort a list of odd-even sorting algorithm.	of numbers using the

Q4. (20 Marks)		
A	Solve any Two	5 marks each
i.	Explain Communication Model o	f Parallel Platforms.
<u>ii.</u>	Give the advantages in using non-	- uniform memory access model.
iii.	Explain Non-Blocking Message I	Passing Operations
В	Solve any One	10 marks each
i.	Task-dependency graphs	
	(a)	tb)
	(c)	(d)

3 | Page

BC33584B094892E4D85A8607F3A57A0C

•

	For the task graphs given in above figure determine the following:
	1. Maximum degree of concurrency.
	2. Critical path length.
	3 Maximum achievable speedup over one process assuming that an
	arbitrarily large number of processes is available.
	4. The minimum number of processes needed to obtain the maximum
	possible speedup.
ii.	Write a short note on Topologies and Embedding

.