Please check whether you have got the right question paper.
N.B: 1. Q 1 is compulsory.
2. Attempt any three from remaining
3. Rights indicate full marks.

1. a. If $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are subset of universal set V then prove that $A \times(B \cap C)=(\mathrm{A} \times B) \cap(A \times C)$
b. If $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ is given by $\mathrm{y}=2 \mathrm{x}+1$, prove that f is one to one and onto and find f^{-1}
c. Find $\mathrm{J} .\left\{\left(1+t \bar{e}^{t}\right)^{3}\right\}$
d. Check whether the following function Harmonic or not $3 x^{2}+\sin x+y^{2}+5 y+4$
2. a. Find k if $\mathrm{f}(\mathrm{z})=\frac{1}{2} \log \left(x^{2}+y^{2}\right)+\mathrm{i} \tan ^{-1} \frac{k x}{y}$ is analytic
b. Find $L\{|\sin 2 t|\}$
c. Let $f: R \rightarrow R \quad f(x)=x^{2}+2 x-1$
$g: R \rightarrow R \quad g(x)=4 x^{2}+2$

Find (1) f 0 (gof) (II) go (fog)
3. a. Find Bilinear transformation under which $Z=1,-i,-1$ from point $w=i, 0,-i$
b. If A be the set of non-integers and let R be a relation on $A \times A$ defined by $(a, b) R(c, d)$ if $a d=b c$, then prove that R is an equivalence relation.
c. Find (1) $L\left\{\int_{0}^{t} \bar{e}^{u} \frac{\sin u}{u} d u\right\}$
(2) $\mathrm{L}\left\{\left(1+2 t+3 t^{2}+t^{3}\right) H(t-2)\right\}$
4. a. Use convolution them and evaluate

$$
L^{-1}\left\{\frac{(s+5)^{2}}{\left(s^{2}+10 s+16\right)^{2}}\right\}
$$

b. Find transitive clouser of following relation defined on $A=\{a, b, c, d, e\}$ by Warshal 06 algorithm $\mathrm{R}=\{(a, a)(a, b)(b, c)(c, d)(c, c)(d, e)\}$
c. A man speaks truth 3 times out of 5 when a die is thrown he states that it gave an ace what is probability that this event has actually happened.
5. a. How many four digit numbers can be formed out of the digits $1,2,3,5,7,8,9$ if no digit is repeated twice? How many of them will be greater than 3000 .
b. Solve using Laplace transform
$\frac{d^{2} y}{d t^{2}}+9 y=18$ given that $y(0)=0$ and $y\left(\frac{\pi}{2}\right)=0$
c. Evaluate (1) $\mathrm{L}^{-1}\left\{\frac{1}{\sqrt{2 s+1}}\right\}$
(2) $\mathrm{L}^{-1}\left\{\frac{2 s^{2}-6 s+5}{s^{3}-6 s^{2}+115-6}\right\}$
6. a. Solve $a_{n}=5 a_{n-1}-6 a_{n-2}$ for $n \geq 2, a_{0}=0, a_{1}=1$
b. Find orthogonal curves of family of curves $e^{-x} \operatorname{Cos} y+x y=\alpha$, where α is the real constant
c. i. Find the image of rectanguiar region bounded by $x=0, x=3, y=0, y=2$ under the transformation $\mathrm{w}=\mathrm{z}+(1+\mathrm{i})$
ii. A fair dice is thrown thrice. Find probability that sum of numbers obtained is 10 .

