Time Duration: 3Hr

Total Marks: 80

N.B.:1) Question no.1 is compulsory.

Maximum

- 2) Attempt any three questions from Q.2to Q.6.
- 3) Figures to the right indicate full marks.

Marks

15]

[5]

- Q1. a) Find the Laplace transform of $\frac{1}{t}e^{-t}\sin t$.
 - Find the inverse Laplace transform of $\frac{1}{\sqrt{2s+1}}$.
 - c) Show that the function $f(z) = \sinh z$ is analytic and find f'(z) in terms of z.
 - d) Find the Fourier series for f(x) = x in $(0, 2\pi)$.

151 [5]

[6]

[6]

[6]

[6]

[8]

- Q2. a) Use Laplace transform to prove $\int_0^\infty e^{-t} \frac{\sin^2 t}{t} dt = \frac{1}{4} \log 5.$
 - If $\{f(k)\} = \begin{cases} 4^k, k < 0 \\ 3^k, k \ge 0 \end{cases}$, find $Z\{f(k)\}$.
 - Show that the function $u = \cos x \cosh y$ is a harmonic function. Find its harmonic [8] conjugate and corresponding analytic function.
- Find the equation of the line of regression of Y on X for the following data.

X	5	6		8	999	10	11
Y	11	14	14	45	12	17	16

- Find the bilinear transformation which maps the points 1, -i, 2 on z-plane onto 0, 2, -i **[6]** respectively of w-plane.
- Find half range sine series for $f(x) = \begin{cases} x, & 0 < x < \frac{\pi}{2} \\ \pi x, & \frac{\pi}{2} < x < \pi \end{cases}$, Hence find the sum of c) [8] $\sum_{(2n-1)}^{\infty} \frac{1}{n^4}$
- Find the inverse Laplace transform by using convolution theorem $\frac{1}{(s-a)(s+a)^2}$. [6]
 - Calculate the coefficient of correlation between X and Y from the following data.

	\mathbf{X}	8	8 8 8		5	6	2
9	Y	\$ 31,60	3 540 0	10	13	22	8

Find the inverse Z-transform of

$$i) \quad \frac{1}{(z-a)^2} \quad |z| < a$$

i)
$$\frac{1}{(z-a)^2}$$
 $|z| < a$
ii) $\frac{1}{(z-3)(z-2)}$ $|z| > 3$

Q5.a) Using Laplace transform evaluate $\int_0^\infty e^{-t} \left(1 + 2t - t^2 + t^3\right) H(t-1) dt$.

- b) Show that set of functions $\cos x$, $\cos 2x$, $\cos 3x$ Is a set of orthogonal functions over $[-\pi, \pi]$. Hence construct a set of orthonormal functions.
- c) Solve using Laplace transform $(D^3 2D^2 + 5D)y = 0$, with y(0) = 0, y'(0) = 0, y''(0) = 1. [8]

Q6.a) Find the complex form of Fourier series for f(x) = 2x in $(0, 2\pi)$.

- b) If f(z) and $\overline{f(z)}$ are both analytic, prove that f(z) is constant. [6]
- c) Fit a curve of the form $y = ab^x$ to the following data. [8]

X	1	2	3 4	6
Y	151	100	61 50	20 8
