1. Question No. 1 is compulsory.
2. Out of remaining questions, attempt any three questions.
3. Assume suitable data wherever required but justify the same.
4. All questions carry equal marks.
5. Answer to each new question to be started on a fresh page.
6. Figure to the right in brackets indicate full marks.
7. Solve any four from the followings.
(a) Construct Moore machine equivalent to following Mealy machine.

(b) Construct a PDA for the following Context Free Grammar (CFG).
$S \rightarrow$ CBAA
$\mathrm{A} \rightarrow 0 \mathrm{~A} 0 \mid 0$
$\mathrm{B} \rightarrow 0 \mathrm{~B} \mid 0$
$\mathrm{C} \rightarrow 0 \mathrm{Cl}|\mathrm{IC} 0| \varepsilon$
(c) Construct right lincai grammar and left linear grammar for the regular expression $1(01)^{*} 0(0+1)^{*}$.
(d) Explain the concepts, acceptance by final state and acceptance by empty stack of a Pushdown automata with suitable example.
(e) Construct regular expression for the following FA using state elimination method.

8. (a) Write down the regular expressions for the following language.
i. L is the language of all strings over $\{0,1\}$ having odd number of 0 's and any number of l's.
ii. L is the language of all strings over $\{0,1\}$ having number of 1 's multiple of three.
(b) Construct DFA for the following NFA with $\boldsymbol{\varepsilon}$-moves.

(c) Construct NFA with ε-moves for the regular expression $a b^{*}(a+b)^{*}+\mathrm{ba}^{*}$
9. (a) Covert the following context free grammar into Chomsky normal form.

$$
\mathrm{S} \rightarrow \mathrm{~A}|\mathrm{C} \quad \mathrm{~A} \rightarrow \mathrm{aA}| \mathrm{a}|\mathrm{~B} \quad \mathrm{~B} \rightarrow \mathrm{bB}| \mathrm{b}|\varepsilon \quad \mathrm{C} \rightarrow \mathrm{cC}| \mathrm{c} \mid \mathrm{B}
$$

(b) Construct a Context Free Grammar (CFG) for the following PDA.
$\mathrm{M}=\left(\left\{\mathrm{q}_{0}, \mathrm{q}_{1}\right\},\{(),,[]\},,\left\{\left(,\left[, \mathrm{Z}_{0}\right\}, \delta, \mathrm{q}_{0}, \mathrm{Z}_{0}, \Phi\right)\right.\right.$ and δ is given by:
$\delta\left(q_{0},\left(, Z_{0}\right)=\left(q_{0},\left(Z_{0}\right)\right.\right.$
$\delta\left(q_{0},\left[, Z_{0}\right)=\left(q_{0},\left[Z_{0}\right)\right.\right.$
$\delta\left(q_{0},\left(,()=\left(q_{0},(())\right.\right.\right.$
$\delta\left(q_{0},\left[,[)=\left(q_{0},[]\right)\right.\right.$
$\delta\left(q_{0},\left(,[)=\left(q_{0},([)\right.\right.\right.$
$\delta\left(q_{0},\left[,()=\left(q_{0}, L()\right.\right.\right.$
$\delta\left(\mathrm{q}_{0},\right),()=\left(\mathrm{q}_{0}, \varepsilon\right)$
$\delta\left(\mathrm{q}_{0},\right],[)=\left(\mathrm{q}_{0}, \varepsilon\right)$
$\delta\left(\mathrm{q}_{0}, \varepsilon, \mathrm{Z}_{0}\right)=\left(\mathrm{q}_{1}, \varepsilon\right)$
4. (a) Construct a PDA for $\mathrm{L}=\left\{\mathrm{a}^{\mathrm{n}} \mathrm{bc}^{\mathrm{m}} \mid \mathrm{n}, \mathrm{m} \geq 1\right.$ and $\left.\mathrm{n}<\mathrm{m}\right\}$.
(b) Design a DFA over $\{0,1\}$ which accepts all strings that contain substring ' 11 ' and do not contain the substring ' 00 '.
(c) Give context free grammar for the following languages.
i. $\quad \mathrm{L}=\left\{0^{\mathrm{n}} \mathrm{I}^{\mathrm{m}} 0^{\mathrm{k}} \mid \mathrm{m}>\mathrm{n}+\mathrm{k}\right.$ and $\left.\mathrm{n}, \mathrm{m}, \mathrm{k} \geq 0\right\}$
ii. $\quad \mathrm{L}=\left\{\mathrm{a}^{2 \mathrm{n}} \mathrm{b}^{3 \mathrm{~m}} \mathrm{c}^{\mathrm{m}} \mathrm{d}^{\mathrm{n}} \mid \mathrm{n}, \mathrm{m} \geq 1\right\}$
5. (a) Construct Turing Machine to accept language $\mathrm{L}=\left\{\mathrm{a}^{\mathrm{n}} \mathrm{b}^{2 \mathrm{n}+1} \mid \mathrm{n} \geq 1\right\}$.
(b) Find the equivalent NFA with ϵ-moves accepting the regular language defined by the following grammar.
$\mathrm{S} \rightarrow 01 \mathrm{~S} \mid 0 \mathrm{~A}$
$\mathrm{A} \rightarrow 10|1 \mathrm{~B}| 00 \mathrm{~A}$
$\mathrm{B} \rightarrow \mathrm{IS}|1 \mathrm{~B}| \mathrm{C}$
(c) Let G be the grammar having following set of production.

$$
\begin{equation*}
\mathrm{S} \rightarrow \mathrm{ABA} \quad \mathrm{~A} \rightarrow \mathrm{aA}|\mathrm{bA}| \epsilon \quad \mathrm{B} \rightarrow \mathrm{bbb} \tag{05}
\end{equation*}
$$

For the string "ababbbba", find a leftmost derivation and rightmost derivation.
6. (a) Minimize the following DFA $M=\left(\left\{q_{0}, q_{1}, q_{2}, q_{3}, q_{4}, q_{5}\right\},\{0,1\}, \delta, q_{0},\left\{q_{3}, q_{5}\right\}\right)$, where δ is given in the following table.

	$\rightarrow \mathrm{q}_{0}$	q_{1}	q_{2}	$* \mathrm{q}_{3}$	q_{4}	$* \mathrm{q}_{5}$
0	q_{1}	q_{3}	q_{5}	q_{3}	q_{5}	q_{3}
l	q_{2}	q_{4}	q_{1}	q_{4}	q_{1}	q_{4}

(b) Construct Turing Machine wherein given an input 1^{n} leaves $1^{\text {in+1 }}$ on the tape. Covert the TM design into equivalent function.
(c) What do you understand by closure property? State the various set theoretic operations under which regular languages are closed. Give suitable example.

