Paper / Subject Code: 41005 / Automata Theory

(3 Hours)

[Total Marks: 80]

1. Question No. 1 is compulsory.

- 2. Out of remaining questions, attempt any three questions.
- 3. Assume suitable data wherever required but justify the same.
- 4. All questions carry equal marks.
- 5. Answer to each new question to be started on a fresh page.
- 6. Figure to the right in brackets indicate full marks.

1. Solve any four from the followings.

(a) Construct Moore machine equivalent to following Mealy machine.

[05]

(b) Construct a PDA for the following Context Free Grammar (CFG).

[05]

$$S \rightarrow CBAA$$

$$A \rightarrow 0A0 \mid 0$$

$$B \rightarrow 0B \mid 0$$

$$C \rightarrow 0C1 \mid 1C0 \mid \epsilon$$

- (c) Construct right linear grammar and left linear grammar for the regular expression 1(01)*0(0+1)*. [05]
- (d) Explain the concepts, acceptance by final state and acceptance by empty stack of a Pushdown automata with suitable example. [05]
- (e) Construct regular expression for the following FA using state elimination method. [05]

2. (a) Write down the regular expressions for the following language.

[04]

- i. L is the language of all strings over {0, 1} 'having odd number of 0's and any number of 1's.
- ii. L is the language of all strings over {0, 1} having number of 1's multiple of three.
- (b) Construct DFA for the following NFA with ε-moves.

[10]

(c) Construct NFA with ϵ -moves for the regular expression $ab^*(a+b)^* + ba^*$

[06]

Paper / Subject Code: 41005 / Automata Theory

3. (a) Covert the following context free grammar into Chomsky normal form. [10]

 $S \rightarrow A \mid C$ $A \rightarrow aA \mid a \mid B$ $B \rightarrow bB \mid b \mid \epsilon$ $C \rightarrow cC \mid c \mid B$

(b) Construct a Context Free Grammar (CFG) for the following PDA. [10]

 $M = (\{q_0, q_1\}, \{(,), [,]\}, \{(, [, Z_0\}, \delta, q_0, Z_0, \Phi) \text{ and } \delta \text{ is given by:}$

 $\delta(q_0, (Z_0)) = (q_0, (Z_0))$

 $\delta(q_0, [, Z_0) = (q_0, [Z_0)$

 $\delta(q_0, (, () = (q_0, (())$

 $\delta(q_0, [, [) = (q_0, [[)$

 $\delta(q_0, (, [) = (q_0, ([))$

 $\delta(q_0, [, () = (q_0, [()$

 $\delta(q_0,), () = (q_0, \epsilon)$

 $\delta(q_0,], [) = (q_0, \epsilon)$

 $\delta(q_0,\,\epsilon,\,Z_0)=(q_1,\,\epsilon)$

- 4. (a) Construct a PDA for $L = \{a^nbc^m \mid n, m \ge 1 \text{ and } n \le m\}$.
 - (b) Design a DFA over {0, 1} which accepts all strings that contain substring '11' and do not contain the substring '00'. [06]
 - (c) Give context free grammar for the following languages.

i. $L = \{0^n 1^m 0^k \mid m > n + k \text{ and } n, m, k \ge 0\}$

- ii. $L = \{a^{2n}b^{3m}c^md^n | n, m \ge 1\}$
- 5. (a) Construct Turing Machine to accept language $L = \{a^nb^{2n+1} \mid n \ge 1\}$. [10]
 - (b) Find the equivalent NFA with ϵ -moves accepting the regular language defined by the following grammar. [05]

 $S \rightarrow 01S + 0A$

 $A \to 10 | 1B | 00A$

 $B \rightarrow 1S \mid 1B \mid \epsilon$

(c) Let G be the grammar having following set of production.

[05]

[04]

 $S \rightarrow ABA$

 $A \rightarrow aA \mid bA \mid \epsilon$

 $B \rightarrow bbb$

For the string "ababbbba", find a leftmost derivation and rightmost derivation.

6. (a) Minimize the following DFA $M = (\{q_0, q_1, q_2, q_3, q_4, q_5\}, \{0, 1\}, \delta, q_0, \{q_3, q_5\})$, where δ is given in the following table. [06]

	$\rightarrow q_0$	q_1	q_2	* Q 3	q ₄	*q5
0	qı	q_3	q ₅	q 3	q ₅	q_3
1	q_2	q ₄	q_1	q ₄	q_1	q ₄

- (b) Construct Turing Machine wherein given an input 1ⁿ leaves 1³ⁿ⁺¹ on the tape. Covert the TM design into equivalent function.
- (c) What do you understand by closure property? State the various set theoretic operations under which regular languages are closed. Give suitable example. [04]