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(3 Hours)

N.B. : 1) Question No. 1 is Compulsory.

2) Answer any THREE questions from Q.2 to Q.6.

3) Figures to the right indicate full marks.

Q 1. a) Evaluate the Laplace transform of L[(sin 2t —cos 21)°]

[Total Marks: 80]

b) Determine the constants a, b, ¢, d so that the function f (z) = x> + axy + by’ +i(cx’ + dxy + y°)is

analytic

c)If = 3x2y— y322 find v ¢ atthe point P (1,-2,-1)

d) Obtain half range sine series forf (x) =x*in0<x<3

Q 2. a)Construct analytic function whose real part.is e* cos'y

b) Find the Fourier series for f (x) =| x| in (=2,2).

¢) Find the Laplace transform of the following

i) L[t1+sint]

O sintsin b5t
..)L{—}
t

2
Q 3. a) Prove thatJ,,, (x) = /—sin X
T X

b) Evaluate inverse Laplace transform using Convolution Theorem L™ L

S

]

ey

c) Show that the vector field F = (2xy +z°) i+ x*> j+(3x2° + 2z)k is conservative and find

# (X, y,z) suchthat F = V.

Q 4 a)Find bilinear transformation which maps the points z=0,i,-2i of z plane onto the points

w = —4i,0,0 ofw plane

b) Prove that f (x) =1, f, (x) =

¢) Find the Fourier transform of f (t) = e

7‘t+1‘

2
Q5 a) Solve Using Laplacetransformd_y_ 4y =3e' where y(0)=0 & y'(0)
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b) Find Complex form of the Fourier series for f (x) =e® in -z < x< x [6]

c) Verify Green’s Theorem for fz y > dx + 3xdy where Cis the boundary of the closed region

C

bounded by y = x* and y =x. [8]
s
Q6. a) Evaluate L™ | % | (6]
(s*+27) |
]
1
b) Find the map of the line x-y=1 by transformationw = — [6]

z

c¢) Using Stoke’s theorem evaluate f(y dx +zdy + xd z ) where Cisthe curve of intersection of the

C

sphere x’+ y°+ z°=a’ andplanex+z =a [8]
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