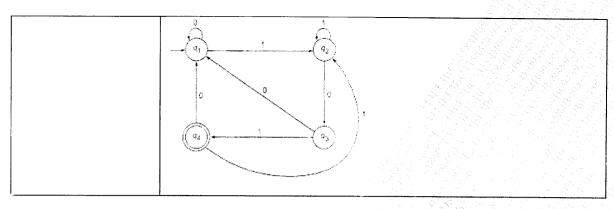
University of Mumbai Examinations Summer 2022

Program: Computer Engineering

Curriculum Scheme: Choice Base Credit Grading System Rev2016 Examination: TE Computer Engineering Semester V (Choice Based Credit Grading System)

Course Code: 31904 and Course Name: Theory of Computer Science

Time: 2 hour 30 minutes


Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks		
1.	Write a Regular expression for string for $\Sigma = \{0, 1\}$ containing exactly two 0s.		
Option A:	1*001*		
Option B:	1*01*01*		
Option C:	(1+0)*00		
Option D:	01*0		
2.	FSM is less powerful than TM because		
Option A:	It does not have the capability to remember long input sequence		
Option B:	It has no finite states		
Option C:	It had no single final state		
Option D:	It has multiple start state		
3.	Context Sensitive grammars aregrammers.		
Option A:	Type 0		
Option B:	Type 1		
Option C:	Type 2		
Option D:	Type 3		
4.	A language L is recursively enumerable if and only if it can be enumerated by some		
Option A:	Turing machine		
Option B:	Finite State Machine		
Option C:	Deterministic finite state machine		
Option D:	Moore machine		
5.	Halting problem is		
Option A:	Unsolvable		
Option B:	Solvable		
Option C:	Depends on problem		
Option D:	Depends on TM and UTM		
1 10 10			
6.	If S> TaaaT, T> aT, T> bT, T> hten the language generated can be		
	given as		
Option A:	(a+b)aaa(a+b)		
Option B:	(a+b)*aaa(a+b)*		
Option C:	aaa		
Option D:	(ab)*aaa(ab)*		
7.	Which of the following can accept even palindrome over {a,b}		
Option A:	FSM		
Option B:	DFA		
Option C:	NFA		
Option D:	Turing Machine		

8.	If the grammer is such that every production is of the type A>aB then the grammer is	
	in	
Option A:	Chomsky's Normal form	
Option B:	Greibach Normal form	
Option C:	Not any normal form	
Option D:	Context free form	
9.	Identify the correct equation for Arden's Theorem.	
Option A:	R = Q + RP has a unique solution: $R=Q*P$	
Option B:	R = Q + RP has a unique solution: $R = Q * P *$	
Option C:	$R = Q + RP$ has a unique solution: $R = QP^*$	
Option D:	R = Q + RP has a unique solution: $R = (P*Q*)*$	
10.	The productions of the form $A \rightarrow B$, is called	
Option A:	Null production	
Option B:	Unit production	
Option C:	Unique production	
Option D:	Useless production	

Q2			
A	Solve any Two 5 marks each		
i.	Write Short note on Undecidability.		
ii.	Define ambiguity in Grammar. Give an example of ambiguous grammar.		
iii.	Design a automata accepting strings containing 1101 for $\Sigma = \{0, 1\}$		
В	Solve any One 10 marks each		
i.	Convert the following regular expression to DFA (0+1)*(00+11)001		
ii.	Design a Moore machines that output modulus 5 when an input is given in Decimal format. Also convert the same into mealy machine		

Q3	Solve any Two Questions out of Three	10 marks each
A	Explain Turing Machine. Design a TM for $0^n 1^n 2^n n > 1$	•
	Reduce the following grammar to Greibach Normal Fo S->AB	orm
B	A->a B->C b C->D	
	C->D D->E	
C	E->a Explain and prove Arden's theorem. Find the regular e	xpression for the
	following automata using Arden's theorem.	

Q4			
A	Solve any Two 5 marks each		
i.	Explain Chomsky's classification of Languages		
ii.	Discuss post correspondence problem with suitable example.		
iii.	Convert following grammar to CNF S->aSab bSb aa bb a b		
В	Solve any One 10 marks each		
i.	State pumping lemma for Regular languages. Prove $L = a^p p$ is prime is not regular		
ii.	Design a PDA that accepts following strings $L = (ab)^n c^n n >= 1$		