Paper / Subject Code: 41001 / Applied Mathematics-IV

$S, E \cdot(I T)(\operatorname{sem}-I V)(C B)$
 Date-4/12/19

[Time: 3 Hours]
[Marks:80]
Please check whether you have got the right question paper.
N.B: 1. Q. 1 is compulsory
2. Attempt any three out of remaining five question
3. Rights indicate full marks.

1. a. Find greatest common divisor of the following pairs of integer, using Euclidean algorithm. $(3083,2893)$
b. Given two lines regression

$$
6 y=5 x+90,15 x=8 y+130, \sigma_{x}^{2}=16
$$

Find (i) \bar{x} and $\bar{y} \quad$ (ii) Find r
c. Prove that $\mathrm{A}=\{1,2,3,4,5,6\}$ is a finite abelian group under multiplication modulo 7
d. A random variable x has the following probability function

$\mathrm{x}:$	1	2	3	4	5	6	7
$\mathrm{p}(\mathrm{x})$	K	2 K	3 K	$\mathrm{~K}^{2}$	$\mathrm{~K}^{2}+\mathrm{k}$	$2 \mathrm{~K}^{2}$	$4 \mathrm{~K}^{2}$

Find (I) $\mathrm{k} \quad$ (II) $\mathrm{p}(\mathrm{x}<5)$
2. a. Calculate coefficient of correlation between x and y

$\mathrm{x}:$	3	6	4	5	7
$\mathrm{y}:$	2	4	5	3	6

b. A random sample of size 16 from a normal population. Showed a mean of 103.75 cm and $\mathbf{0 6}$ sum of squares of deviation from the mean $843.75 \mathrm{~cm}^{2}$ can we say that the population has mean of 108.75 cm ?
c. Prove that $\mathrm{G}=\{1,-1, i,-i\}$ is a group under usual multiplication of complex numbers.
3. a. Draw Hasse diagram for $\left(\mathrm{D}_{75}, \leq\right)$, check whether it is a lattice
b. Out of 1000 families of 3 children each how many would you expect to have 2 boys and 1 girl?
c. i. Find last digit of base 7 expansion of 3^{100} i.e. $3^{100}(\bmod 7)$ by using Fermat's theorem 08
ii. Find the Legendre's symbol $\left(\frac{19}{23}\right)$
4. a. Can a complete graph with 8 vertices have 40 edges excluding self-loop
b. Find remainder when 2^{50} and 41^{65} are divisible by 7
c. Investigate the association between darkness of eye colour in father and son from the $\mathbf{0 6}$ following data

$\begin{gathered} 0 \\ 0.0 \\ n \\ \vdots \\ \vdots \end{gathered}$		Dark	Not Dark	Total
	Dark	48	90	138
	Not dark	80	782	862
		128	872	1000

5. a. Let $\mathrm{L}=\{1,2,3,4,12\}$ and the relation be "is divisible by" write compliments of L
b. If x is a Poisson variate and $p(x=0)=6 p(x=3)$ Find $P(x=2)$
c. Define the following terms giving illustration

1.	Simple graph	2.	Complete graph
3.	Bipartite graph	4.	Planar graph

6. a. Solve $x \equiv 1(\bmod 5)$

$$
\begin{aligned}
& x \equiv 2(\bmod 6) \\
& x \equiv 3(\bmod 7)
\end{aligned}
$$

b. A certain injection administered to 12 patients resulted in following changes of blood pressure $\mathbf{0 6}$ $(5,2,8,-1,3,0,6,-2,1,5,0,4)$ can it be concluded that injection will be in general accompanied by an increase in blood pressure?
c. i. Write the following permutation as product of disjoint cycles
$\mathrm{f}=(1325)(145)(251)$
ii. simplifies sum of product
$(\mathrm{A}+\mathrm{B})\left(\mathrm{A}+\mathrm{B}^{1}\right)\left(\mathrm{A}^{1}+\mathrm{B}\right)\left(\mathrm{A}^{1}+\mathrm{B}^{1}\right)$

