11:00 am - 02:00 pm

Renewable Energy Sources

Q.P. Code: 27951

[Time: 3 hours] [Marks: 80]

T A	4	
N	Ote:	
Τ.4	uu.	۰

1.	Question	No.1	is	compulsory	J
1.	Question	110.1	10	Compaisor	,

- 2. Attempt any three questions from remaining.
- 3. Assume suitable data if required.
- 4. Marks are specified in last column.

Q.1 Solve any Five

(20)

- a) State the various direct applications of solar energy.
- b) Describe the potential of renewable energy sources in India.
- c) State the site selection criteria for locating wind mills.
- d) Define solar constant, air mass, solar altitude angle, angle of incidence.
- e) State atleast five sites/places available in India for harnessing geothermal energy.
- f) Describe working of Fixed dome type biogas plant.
- Q.2 a) Describe construction and working of wind energy conversion system with neat (8) sketch.
 - b) Describe working of solar pumping system with neat sketch. (6)
 - c) Describe working of single basin tidal power plant.

(6)

- Q.3 a) If the angle of declination on a particular day was $+ 18.25^{\circ}$, which is the date (8) assuming leap year? Calculate the day length on May 02^{nd} on a surface sloping southward at an angle of 40° at a place of 19° 07 N latitude & $72^{\circ}51$ longitude.
 - b) Which factors affect the rate of production of biogas? State their ideal values/range (6) for maximum biogas production?
 - c) State the advantages and disadvantages of geothermal energy. (6)
- Q.4 a) State and explain the design considerations in wind turbine design. (8)
 - b) Describe working of wave energy conversion system with neat sketch. (6)
 - c) State various parameters which affects performance of solar collectors. State (6) limitations of flat plate collectors.

Q.P. Code: 27951

- Q.5 a) Following observation were recorded from a test on Biogas system:

 C.V. of methane: 28.5 MJ/m³; Burner efficiency: 60%; Number of cows: 8; Retention period: 20 days; Temperature of fermentation: 30°C; Dry matter collected per cow per day: 2 Kg; Density of dry matter in the fluid in the digester: 50 Kg/m³; Biogas yield: 0.2 m³ per Kg of dry input; Methane proportion in the biogas: 0.7. Determine volume of digester and power available from biogas digester.
 - b) Describe working of Claude cycle OTEC system with neat sketch. (6)
 - c) Describe working of central tower receiver using Heliostat mirror with neat sketch. (6)
- Q.6 a) Calculate the rotor radius for a multi-blade wind machine operating at a design speed of (10) 25 kmph. The machine operates a water pump having a capacity of $5.1 \text{ m}^3/\text{ hr}$ and a lift of 9 m. The following data is given: Density of water = 996 Kg/m^3 ; efficiency of water pump = 0.6; efficiency of transmission from rotor to pump = 0.9; $C_p = 0.31$; $\lambda = 0.75$; density of air is 1.2 Kg/m^3 .
 - b) State the classification of fuel cells in brief and describe working of Molten carbonate (6) fuel cell (MCFC) with neat sketch.
 - c) Describe working of low temperature binary fluid system with neat sketch. (4)
