(3 Hours) Total Marks: 80

- **N.B.**: (1) Question No. 1 is compulsory.
 - (2) Attempt any three questions out of remaining five questions
- Q.1 (a) By using matrices, solve the following system of linear equation 20x + y 2z = 17, 3x + 20y z = -18, 2x 3y + 20z = 25.
 - (b) State Central limit theorem. Let \bar{X} be the mean of a random sample of size 50 drawn from a population with mean 112 and standard deviation 40.
 - a. Find the mean and standard deviation of \bar{X} .
 - b. Find the probability that \bar{X} assumes a value between 110 and 114.
 - (c) Obtain the graph of $y = e^{-2x}$ (5)
 - (d) Compare constrained and non-constrained optimization Techniques. (5)
- Q.2. (a) Find Singular Value of Decomposition of matrix $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$ (10)
 - (b) Ten students were given intensive coaching for a month in Statistics. The scores obtained in tests are given below.

Sr. No	1	2	3 4	4	5	6	7.0	8	9	10
Marks in 1 st test	50	52	53	60	65	67	48	69	72	80
Marks in 2 nd test	65	55	65	65	60	67	49	82	74	86

Does the score from test 1 to test 2 show an improvement? Test at 5% level of significance.

Out of 800 persons 25% were literate and 300 had travelled beyond the limits (10) of the district. 40% of the literates were among those who had not travelled.

Q.3. (a) Prepare a 2 x 2 table and test at 5% level of significance whether there is any relation between travelling and literacy.

Draw two Pie diagrams to represent the following data giving profits of different partners in a firm. (10)

	Partner	Profit (in ₹) 2021	Profit (in ₹) 2022
	A J	2200	1400
(b)	B	2000	1600
(0)	C	1800	2900
		1600	1700
Ó	E	1400	1600
	F S	1000	800
£5,	Total	10,000	10,000

Q.4. (a) Find 3 yearly moving averages and represent these on a graph paper. Also represent the original time series on the graph. (10)

					<u> </u>				
Year	1999	2000	2001	2002	2003	2004	2005	2006	2007
Sales (in lakhs)	12	15	20	18	25	32	30	40	44

(b) Minimize the function $f(x_1, x_2) = 4x_1 + 8x_2 - x_1^2 - x_2^2$ subject to $x_1 + x_2 = 4$, $x_1, x_2 \ge 0$

Page 1 of 2

Paper / Subject Code: 48828 / 10] Mathematics for AI & ML

- Q.5. (a) Explain the need for exploratory data analysis. Also list and explain exploratory data analysis techniques. (10)
 - (b) Find the root of the equation $x^3 4x 9 = 0$ using bisection method correct (10) three decimal places in the interval (2, 3).
- Q.6. (a) Describe with example and action to be taken for the following (10)
 - 1. Data Cleaning
 - 2. Irrelevant data
 - 3. Incorrect data
 - 4. Data cleaning
 - 5. Outliers
 - (b) Write a short note on linear discriminant analysis techniques and principal component analysis algorithm (10)

40279