Note : 1) Question no. 1 is compulsory.
2) Attempt any three questions out of five questions

Q-1
a) If any 11 numbers between 1 and 20 are chosen show that at least two of them will be multiplies of each other.
b) A function $f: R-\left\{\frac{7}{3}\right\} \rightarrow R-\left\{\frac{4}{3}\right\}$ is defined by $f(x)=\frac{4 x-5}{3 x-7}$, Prove that f is bijective and find the rule for f^{-1}.
c) Find $L\left[\frac{d}{d t}\left(\frac{1-\cos 2 t}{t}\right)\right]$
d) Prove that there does not exist an analytic function whose imaginary part is

$$
\begin{equation*}
3 x^{2}+\sin x+y^{2}+5 y+4 \tag{05}
\end{equation*}
$$

Q-2
a) Find $L^{-1}\left[\frac{s}{\left(s^{2}+3^{2}\right)\left(s^{2}+5^{2}\right)}\right]$ using convolution Theorem.
b) What is the chance of throwing ten with four dice?
c) In a certain examination there are multiple choice questions. There are four possible answers to each questions and one of them is correct. An intelligent student can solve 90% questions correctly by reasoning and for the remaining 10% questions he gives answer by guessing. A week student can solve 20% question correctly by reasoning and for the remaining 80% questions he gives answer by guessing. An intelligent student gets the correct answer. What is the probability that he was guessing.

Q-3
a) A can hit a target 2 times in 5 shots, B 3 times in 4 shots, C 2 times in 3 shots. They fire a volley. What is the probability that at least 2 shots hit the target?
b) Find $L^{-1}\left(\tan ^{-1}\left(\frac{2}{s^{2}}\right)\right)$
c) If R is the relation on the set of integers such that $a R b$ if and only if $2 a+3 b$ is divisible by 5 .

Find the equivalence classes.
Q-4
a) Evaluate $\int_{t=0}^{\infty} e^{-3 t}\left(\frac{\cos (7 t)-\cos (11 t)}{t}\right) d t$
b) Find $L^{-1}\left[\frac{s^{2}+2 s+3}{\left(s^{2}+2 s+10\right)\left(s^{2}+2 s+17\right)}\right]$
c) Find the bilinear Transformation which maps the points $2, i,-2$ on to the points $1, i,-1$.

Also find image of $|z|=1$ of z-plane to w-plane.

Q-5

a) A family consisting of an old man, 6 adults and 4 children is to be seated in a row for dinner. The children wish to occupy two seats at each end and the old man refuse to have a child on either side of him. In how many ways can the seating arrangement be made for the dinner?
b) Find the analytic function $f(z)=u+i v$ in terms of z if $u-v=(x-y)\left(x^{2}+4 x y+y^{2}\right)$.
c) Solve $\frac{d^{3} y}{d t^{3}}-2 \frac{d^{2} y}{d t^{2}}+5 \frac{d y}{d t}=0$ with $\mathrm{y}(0)=0, \mathrm{y}^{\prime}(0)=0, \mathrm{y}^{\prime \prime}(0)=1$.

Q-6
a) Prove that $(A-B) \cup(B-A)=(A \cup B)-(A \cap B)$
b) Draw the Hasse diagram of D_{105}.
c) Find Laplace Transformation of the following
i) $t e^{3} \operatorname{erf}(5 \sqrt{t})$,
ii) $\sin t H(t)+(\cos t-\sin t) H(t-\pi)$

