Paper / Subject Code: 42108 / Elective- II 5)Soft Computing | | | (3 HOURS) Total Marks | s: 80 | |--------|--------------------------|--|------------------| | N.B. (| (1) Qu | uestion No 1 is compulsory | 2,2 | | (| 2) Att | empt any three Questions out of the remaining five questions | 200 | | Q1 | (a)
(b)
(c)
(d) | What are the differences between Hard computing and Soft Computing How do you distinguish linearly separable for linearly non-separable patterns? Define Extension principle with an example What are the various Selection types used in Genetic Algorithms. Explain Roulette Wheel with an appropriate example | 5
5
5
5 | | Q2 | (a)
(b) | Compare the learning rules used for supervised and unsupervised and specify how the weight adjustments are done in each case Use perceptron learning rule for computing weights after one iteration for the data | 10
10 | | | | given bellow $X_1=[1-2\ 0-1]^T$; $X_2=[0\ 1.5-0.5-1]^T$; $X_3=[-1\ 1\ 0.5-1]^T$. Initial weight $W^1=[1-1\ 0\ 0.5]$. The learning constant is given by c=0.1. The teacher's desired responses for X_1,X_2,X_3 are $[-1,-1,1]$ respectively. | | | Q3 | (a) | Design a fuzzy controller for controlling the amount of detergent required in a washing machine. The inputs are dirt and grease on clothes and the output is amount of detergent required. Use 3 descriptors for inputs and outputs respectively. Prove that clothes which have less dirt and grease requires less detergent and vice versa. Draw figures wherever required. | 20 | | Q4 | (a) | An engineer is testing the properties, strength and weight of steel. Suppose he has two fuzzy sets, A defined on universe of discourse $\{s_1,s_2,s_3\}$ and B defined on a universe of discourse $\{w_1,w_2,w_3\}$. The membership of A and B are given by $\mu_A = \{(s_1,1),(s_2,0.5),(s_3,0.2)\}$ and $\mu_B = \{(w_1,1),(w_2,0.5),(w_3,0.3)\}$ a. Find the Cartesian product of A and B i.e R=A X B b. Suppose $C = \{(s_1,0.1),(s_2,0.6),(s_3,1)\}$. Find $S = C \times B$ c. Find C o R using Max-min composition d. Find $C \cdot R$ using max-product composition | 10 | | | (b) | How Learning Vector Quantization helps in classifying data samples? Write the algorithm of LVQ? | 10 | | Q5 | (a)
(b)
(c) | With a neat diagram explain the architecture of ANFIS? Explain Steepest Descent Algorithm with a suitable example State the differences between derivative based and derivative free optimization | 8
8
4 | | Q6 | (a)
(b)
(c) | Write short notes on any two :- Block Diagram of Error Back Propagation Training Algorithm(EBPTA) Different membership functions of fuzzy logic Major components of Genetic Algorithm | 10
10
10 | 56152