(3 Hours)

[Max. Marks 80]

N.B. (1) Question No. 1 is compulsory	
(2)Assume suitable data if necessary	
(3)Attempt any three questions from remaining questions	SY AND
(a) Convert (1762.46) ₁₀ into octal, binary and hexadecimal.	(3)
(b) Prove OR-AND configuration is equivalent to NOR-NOR configuration.	(3)
(c) Perform Subtraction using 16's complement.	(4)
i) (CB1) ₁₆ – (971) ₁₆	
ii) (426) ₁₆ – (DBA) ₁₆	629
(d) Find 8's complement of following numbers.	(2)
i) (27) ₈ ii) (321) ₈	
(e) Perform following subtraction $(52)_{10} - (65)_{10}$ using 2's complement method.	(2)
(f) Write the hamming code for 1010.	(2)
(g) Implement the following Boolean equation using NAND gates only.	(2)
Y = AB + CDE + F	1000
(h) Explain the term prime implicant.	(2)
2 (a) Design a 4-bit ripple adder.	(10)
(b) Obtain the minimal expression using Quine Mc-Cluskey method	(10)
$F(A,B,C,D) = \sum m(1,5,6,12,13,14) + d(2,4,)$	
3 (a) Implement a full adder using 8: 1 multiplexer.	(10)
(b) Implement the following functions using demultiplexer.	(5)
F1 (A, B, C) = $\sum m (0, 3, 7)$ F2 (A, B, C) = $\sum m (1, 2, 5)$	
(c) Simplify F (A, B, C, D) = \prod M (3, 4, 5, 6, 7, 10, 11, 15) and implement using	(5)
minimum number of gates.	
4 (a) Compare TTL and CMOS logic with respect to fan in, fan out, propagation delay,	(5)
power consumption, noise margin, current and voltage parameters.	
(b) Draw the circuit for S-R flip flop using two NOR gates and write the architecture	(5)
body for the same using structural modelling.	
(c) Explain 1-digit BCD Adder.	(10)
5 (a) Convert JK flip flop to SR flip flop and D flip flop.	(10)
(b) Design 3 bit synchronous counter using T flip flops.	(10)
Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	()
6 Write short note on (any four)	(20)
(a) State table	
(b) ALU IC 74181	
(d) Data flow modelling	
(d) Data flow modelling	
(e) 4-bit ring counter	
7 - 10 10 1 - 10 7 6 1 1 N 6 1 N	