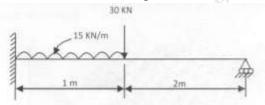

(3 Hours) Total Marks 80

- NB 1. Question No. 1 is Compulsory.
  - 2. Attempt any three questions out of remaining 5 questions.
  - 3. Figures to the right indicates full marks.
  - 4. Assume suitable data wherever necessary but justify the same.


## Q.1. Attempt any Four.

(20

- a) Explain the stages in FEA.
- b) Write element matrix equation in the following fields explaining each term: i)
- 1D steady state, heat transfer by conduction ii) Torsion Analysis.
- c) Explain types of elements with sketches.
- d) Derive the shape function for 1D linear element in the natural coordinate system.
- e) Explain plane stress and plane strain condition with examples.
- Q.2. a) A constant strain triangle element has the nodal coordinates (10, 10), (40, 20) and (30, 50) mm for 1, 2, & 3 nodes respectively. Find the coordinates of point P inside the triangle, if the shape functions are N1=0.15 and N2=0.25. Also find the temperature at point P if temperature at node 1, 2, and 3 are 20°C, 30°C and 50°C respectively.
  - b) For a uniform cross section bar of Length L=1 m. made up of a material having E=2X1011 N/m2 &  $\rho = 7800 kg/m3$ . Estimate the natural frequencies of axial vibration of the bar using lumped mass matrix method. Use a two element mesh. Assume A= 30 X 10-6 m<sup>2</sup>
- Q.3. a) Derive the shape functions of rectangular element in the local coordinate (10) system.
  - b) For the is-parametric quadrilateral element as shown in figure determine (10) Cartesian coordinates of the point 'P' which has local coordinates ( $\zeta$ = 0.9125,  $\eta$ = 0.2106).



Q.4. a) Find using FEA the deflection and slope at nodes and reaction at supports for (10) the beam as shown in figure. Take  $EI = 5000 \text{ KN-m}^2$ .



- b) i) Obtain the strain nodal displacement relationship for one dimensional linear (10) element.
  - ii) Explain Week & Non-week form method used in FEA.
- **Q.5.** a) i) Explain sources of errors in FEA.

(10

- ii) Explain pre-processing and post processing in FEA
- Q.6. Attempt any four.

(20

- a) Explain Global, Local & Natural Co-ordinate System.
- b) Draw Lower order & Higher order 1D, 2D and 3D elements.
- c) Prove that the strain in three node triangular element is constant.
- d) What is significance of shape function?
- e) Obtain the strain nodal displacement relationship for one dimensional linear element.