B.E. (IT) (Sem-VIII) (CBSGS)			
		Doute -	-8/5/19
		(Time: 3 Hrs) Mark	s: 80
N.	B. :	 Question no. 1 is compulsory. Solve any Three questions out of remaining Five questions. 	
Qu-1	a) b) c) d) e)	Attempt any FOUR of the following. How do genetic Algorithms differ from conventional optimization algorithms? Demonstrate/Outline the excluded middle axioms, extended for fuzzy sets. Demonstrate/outline the working of Roulette-wheel selection. Consider a fuzzy set and use Zadeh's notation to represent the same defined on universe $X = \{a, b, c, d, e, f\}$. Then compute/Infer λ cut for: a) $\lambda = 0.9$ b) $\lambda = 0.3$ A single-layer neural network has the weights w = [0.2 0.5 0.66 0.45] with bias b=0.3. It is given an input of I = [0.5 0.8 0.1 0.36]. Find/estimate the output if the sigmoidal activation function is used (slope = 0.3)	5 5 5 5
Qu-2	a) b)	 Determine the weights after one iteration for Hebbian learning of a single neuron network starting with initial weights w = [1 -1]. The inputs are X₁ = [1 -2], X₂ = [2 3], X₃ = [1, -1] and learning rate c=1. a) Use Bipolar Binary activation function. b) Use Bipolar continuous activation function. What are Neuro-Fuzzy Systems? Explain the steps in Neuro-Fuzzy Hybrid System 	10
Qu-3	a)	Using Mamdani fuzzy model design a fuzzy logic controller to determine the wash time of a domestic washing machine. Assume that the inputs are dirt and grease on cloths. Use three descriptors for each input variables and five descriptors for the output variable. Derive a set of rules for control action and defuzzification. The design should be supported by figures wherever possible. Show/Defend that if the clothes are soiled to a larger degree the wash time will be more and vice-versa.	10
~ (0)	Explain weedhoor rins neuron model with example.	10
Qu-4	a)	Describe Genetic Algorithms considering: Encoding, Selection, Crossover, Mutation, and Stopping Condition for Genetic Algorithms.	10
	b)	Consider a suitable set of the binary input/output row matrix to train a hetero-associative network. Demonstrate the working of hetero-associative network and compute the final weight matrix.	10
Qu-5	a) b)	Explain the Backpropagation Algorithm with flowchart. List the variety of Genetic algorithms and explain the Hybrid GA.	10 10
Qu-6	a)	What is Linear Separability? Explain with example why single layer perceptron is not capable of solving Linearly Inseparable problems.	10
	U)	$R = \begin{array}{c} x_{1} \\ x_{2} \end{array} \begin{pmatrix} y_{1} & y_{2} & y_{3} \\ 0.0 & 0.2 & 0.8 \\ 0.3 & 0.6 & 1.0 \end{array} \\ S = \begin{array}{c} y_{1} \\ y_{2} \\ y_{3} \\ 1.0 \end{array} \begin{pmatrix} z_{1} & z_{2} & z_{3} \\ 0.3 & 0.7 & 1.0 \\ 0.5 & 1.0 & 0.6 \\ 1.0 & 0.2 & 0.0 \end{array}$	10

a) Compute/Infer the result of R°S using max-min composition.b) Compute/Infer the result of R · S using max-product composition.

68991