Duration: 3hrs
[Max Marks:80]
N.B. : (1) Question No 1 is Compulsory.
(2) Attempt any three questions out of the remaining five.
(3) All questions carry equal marks.
(4) Assume suitable data, if required and state it clearly.

1 Attempt any FOUR

a Draw the block diagram of analog communication system and explain its working in brief.
b Compare DSBFC, DSBSC and SSB types of amplitude modulation.
c Explain the concept of pre-emphasis and de-emphasis in FM.
d What are the different types of analog pulse modulation techniques? State its applications.
e What are the various factors considered in selection of IF in super heterodyne receivers?
2 a An AM signal produced by modulating a carrier signal of 20 MHz frequency and with a modulating signal of 10 KHz . Compute sideband frequencies, bandwidth and plot the frequency domain representation by assuming the 50% modulation and peak amplitudes of message and carrier signal as 5 V and 10 V respectively.
b Explain the generation and detection of PWM signal?
3 a Explain the working of Foster seeley FM demodulator with the relevant diagrams. Specify its shortcomings.
b What is the need of multiplexing? Explain the Time division multiplexing in detail along with its applications.
4 a Explain the working of indirect FM transmitter. State its advantages
b State different types of noise in communication system. Compute thermal noise voltage and thermal noise power across a resistor of value $10 \mathrm{~K} \Omega$ and bandwidth of 25 MHz at room temperature $\left(27^{\circ} \mathrm{c}\right)$
5 Explain the working of diode detector as AM demodulator. How is practical diode detector different from diode detector?
b What are the various methods of generating FM? Explain the working of FET reactance modulator with required diagrams.
6 a Explain the working of superheterodyne receiver in detail.
b State and prove sampling theorem. State the consequences of not satisfying Nyquist criteria in sampling

