Duration: 3 hrs			Tot		tal Marks: 80	
N.B:	(1) Question No. 1 is Compulso(2) Attempt any three questions(3) Figures to the right indicate(4) Make suitable assumptions	s of the rema e full marks			ations	
1.	(a) Using laws of logic prove that $(\mathbf{p} \rightarrow \mathbf{q} \land \mathbf{q}) \mathbf{V} (\mathbf{r} \rightarrow \mathbf{s} \land \mathbf{s}) \rightarrow \mathbf{q} \mathbf{p} \land \mathbf{r}$ is a					
	Tautology	\$ 50°	20		(5)	
	(b) Find number of integers betw (i)Divisible by 2 or 3 or 5 (ii)Divisible by 3 but not by 2	SEN) which are:	7.2.1835 · 3855	(5)	
	(c) Find the generating function (i) 1,2,3,4 (ii)	for the follow 2,2,2,2	ving sequence	ELDID'	(5)	
	(d) Explain the term Partition set Subset 1 = Elements with a r				g criteria	
	Subset $2 =$ Elements with a r			- O V	(5)	
	Subset 3 = Elements divide	ed by 3.	2/1/200	ADC COLL), SEGIE	
2.	(a) Prove that $G = \{1,2,3,4,5,6,7,6,7,6,7,6,7,6,7,6,7,6,7,6,7,6,7,6$	7,8} is an Ab	elian Group ui	nder multiplicati		
	(b) Solve the recurrence relation	$a_n - a_{n-1} - 6a$	a_{n-2} = -30 where	e a ₀ =20, a ₁ =-5	(10) (10)	
3.	(a) Define Euler path, Euler circuithe following graph has Euler Pa and state the path/circuit.					
	SEED LEGALE AND COLLEGE OF THE SEED OF THE		I BB.		``	
(b)Draw the Hasse Diagram for D_{60} each element.	and D ₁₀₅ . Are	e a Lattice? Ju	stify. Find comp	plement of (8)	
(i	e) You pull a number of socks from number of pulled socks required			_	minimum (4)	
90 ¹ 4.	(a) Let R and S be equivalence r (m,n), (n,m), (n,n), (o,o), (o,p), (p,q), (q,p), (q,q)}.					
	Find the smallest equivalence rel	ation contain	ing both R and	1 S.	(8)	

Paper / Subject Code: 50903 / Discrete Structures

(b) Let

$$\mathsf{H} = \begin{bmatrix} 0 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

be a parity check matrix. Determine the (2,5) group code function.

- (c) A bag contains fruits i.e 9 Mangoes and 6 Apples. In how many ways can you draw 5 fruits from the bag such that (i) they it can be any fruit (ii) All are of the same type (4)
- 5. (a) Consider functions f, g and h defined as follows:

$$f: R \rightarrow R, f(x) = 6x$$

$$g: R \rightarrow R, g(x) = 3x + 2$$

h: R
$$\rightarrow$$
 R, h(x) = 2x + 6

Find g o f, h o f, f o g o h, g o f o h

(b) Consider the following (3,6) group encoding function e: $B^3 -> B^6$ defined by

$$e(000) = 000000$$

$$e(001) = 000110$$

$$e(010) = 010010$$

$$e(011) = 010100$$

$$e(100) = 100101$$

$$e(101) = 100011$$

e(110) = 110111

11
$$e(111) = 110001$$

Decode the following words relative to a maximum likelihood decoding function.

(c) Is the following structure a Lattice? Justify your answer

6. (a) What is a Lattice? Explain with example. Identify if the following lattices are distributive or not. Justify your answer. (8)

Paper / Subject Code: 50903 / Discrete Structures

(b) Define Isomorphism in graphs. Find out if the two graphs given below are isomorphic or not. Justify your answer. (8)

(c) What are different types of Normal Forms. Explain with examples for each. simplify this logical expression. $\mathbf{p} \rightarrow (\mathbf{q} \rightarrow (\mathbf{p} \wedge \mathbf{q})) \wedge ((\mathbf{p} \wedge \mathbf{q}) \rightarrow \mathbf{r})$ (4
