O. P. Code: 27164

(3 Hours) Max Marks: 80

- 1. Question No. 1 is compulsory
- 2. Out of remaining questions, attempt any three questions.
- 3. Assume suitable additional data if required and justify the same.
- 4. Figures in brackets on the right hand side indicate full marks.
- O.1. (A) Compare MMIC with HMIC. (05)
 - (B) What is Optimum Loading and describe the need of it for Microwave (05) Amplifier.
 - (C) How coupled line parameters vary with frequency? (05)
 - (D) List and explain various performance parameters of mixer. (05)
- Q.2. (A) Explain using suitable diagrams two methods of designing broadband (08) amplifier.
 - (B) A BJT has the following *S*-parameters as a function of three frequencies. (12) Determine in which of these cases, device is unconditionally stable and which has greatest stability.

Freq. (MHz)	S ₁₁	S ₁₂	S ₂₁	S_{22}
500	0.70 ∠ – 57°	0.04 ∠ 47°	10.5 ∠ 136°	0.79 ∠ – 33°
750	0.56 ∠ – 78°	0.05 ∠ 33°	8.6 ∠ 122°	0.66 ∠ − 42°
1000	0.96 ∠ – 97°	0.06 ∠ 22°	7.1 ∠ 112°	0.57 ∠ – 48°

- Q.3. (A) Explain Green's Function and discuss its application. (10)
 - (B) Derive the transducer power gain as, (10)

$$G_{T} = \frac{P_{L}}{P_{AVG}} = \frac{1 - |\tau_{s}|^{2}}{(1 - S_{11} \tau_{s})^{2}} \cdot |S_{21}|^{2} \cdot \frac{1 - |\tau_{L}|^{2}}{(1 - S_{22} \tau_{L})^{2}}$$

- Q.4. Design a class A power amplifier at 900 MHz using mRF-8585 NPN transistor with output power of 3 W. Design input and output impedance matching section for amplifier. Find the required input power and compute the power added efficiency. Use the given S-parameter to compute source and load reflection coefficient.
- Q.5. (A) Discuss microwave amplifiers versus microwave oscillators. (05)
 - (B) What is compressed smith chart how it is useful in microwave design. (05)
 - (C) Design one port oscillator using tunnel diode with $\tau_{in} = 1.25 \angle 40^{\circ}$ at 8 (10) GHz in 50 Ω system
- Q.6. (A) Explain in detail single ended diode mixer. What are mixer design (10)
 - (B) considerations? (10)
 What are the advantages of MMIC over HMIC? Also describe the various material selection criteria for MMIC.
