Paper / Subject Code: 42857 / Computational Fluid Dynamics. (DLOC - III)

B.E. (Mechanical) (Sem-VII) (CB) Date-22/11/19

Time : 3 hrs

N.B: 1) Question No.1is compulsory

- 2) Attempt any three questions of the remaining five questions
- 3) Assume suitable data wherever necessary
- 4) Figures to the right indicate maximum marks

Q.1 Answer the following

- a) What is turbulence? Explain the characteristics of s simple turbulent flow.
- b) Explain the errors involved in CFD Modelling
- c) Give the advantages and disadvantages of experimental method for a physical problem
- d) Discuss the types of grids used in discretization.

Q.2

a) Derive Momentum equation in three dimensions and discuss the terms involved in it. 10

b) What is a SIMPLE algorithm used for? Explain the steps involved in the algorithm 10

Q.3

a) A property ϕ is transported by means of convection and diffusion through a one dimensional domain.

The governing equation to be used is $\frac{d}{dx}(\rho u \phi) = \frac{d}{dx}(\Gamma \frac{d\phi}{dx})$. The boundary conditions to be used are at $\mathbf{x} = \mathbf{0}$, $\phi_0 = \mathbf{1}$ and at $\mathbf{x} = \mathbf{L}$, $\phi_L = \mathbf{0}$. Assume that the property is transported from $\mathbf{x} = 0$ to $\mathbf{x} = \mathbf{L}$. Using five equally spaced nodes and an Central Differencing scheme, calculate the distribution of ϕ as a function of x for $\mathbf{u} = 0.1$ m/s, $\mathbf{L} = 1$ m, $\rho = 1.5$ kg/m³, $\Gamma = 0.1$ kg/ms. b) What is OUICK? Give the distribution of flux ϕ at the face values of a control volume **05**

Q.4

Consider a large plate of thickness L = 10 cm with an internal heat generation of 1000 kW/m³ and a constant thermal conductivity of 1.1 W/mK. The faces of the plate are maintained at 100 ° C and 400° C. Assume that the temperature gradients due to conduction are significant in the direction of thickness only

- Write the one dimensional governing equation for the above phenomena
- Obtain the discretized equation for each node
- Arrange the equations in the matrix form and solve it to find the steady state temperature at five equally spaced nodes using TDMA 20

78059

Page 1 of 2

163A4613477425A40D68933844F88376

Marks : 80

20

Q.5

a) A thin plate is initially at a uniform temperature of 500^oC. At a certain time t = 0 the temperature of the east side of the plate is suddenly reduced to 100^oC. The other surface is insulated. Use the fully implicit technique and a time step of 2s; calculate the transient temperature distribution of the plate at the end of the first time step. The plate thickness is 30 mm, thermal conductivity is k = 15 W/mK and $\rho c = 10 \times 10^6 \text{ J} / \text{m}^3\text{K}$. The governing equation of the phenomena is $\rho c \frac{\partial T}{\partial t} = \frac{\partial}{\partial x} \left(k \frac{\partial T}{\partial x} \right)$. 15 b) Write the conservative form of energy equation and explain the terms involved in it. 05

Q.6

a) What is CFD? Give its application. Also describe the working of a commercial CFD software. 10
b) Discuss the properties of discretization scheme. 10

78059

Page 2 of 2