University of Mumbai

Examinations Summer 2022 Frogram: Computer Engineering Curriculum Scheme: Rev2016 Examination: SE Semester: III

Course Code: CSC303 and Course Name: Discrete Mathematics Time: 2 hours 30 mins Max. Marks: 80

Choose the correct option for following questions. All the Questions are Q1. compulsory and carry equal marks Find the power set of {c,d} 1. Option A: $\{\{\emptyset\}, \{c\}, \{d\}, \{c,d\}\}$ Option B: $\{\{c,d\}\}$ Option C: $\{\{c\}, \{d\}, \{c, d\}\}$ Option D: $\{\{\},\{c\},\{d\},\{c,d\}\}$ Let A={a,b,c,d}.Find which relation possess the irreflexive property. 2. Option A: $A = \{ (a,a), (b,b), (c,c), (d,d) \}$ Option B: $A = \{ (a,a), (b,c) (c,b), (d,d) \}$ Option C: $A = \{(a,a), (b,b), (c,c), (c,d)\}$ Option D: $A = \{(a,b), (b,c)(c,d)\}$ 3. Which of the statement not a Proposition? Option A: Oh my god! how this happened? Option B: 1st May is celebrated as Maharashtra day. Option C: 2+2=4 Option D: Apples come in red and green colour. 4. If P is proposition having truth value as F then find the value of the following expression ~(~(~(~(~(~P))))) Option A: True Option B: Multiple Negations cannot be applied Option C: False Option D: Error in the expression 5 If B-A = A-B then what we can interpret ? Option A: Set A and Set B cannot be empty sets. **Option B:** Set A and Set B are complement set of each other. Option C: Set A and Set B are equal set or empty set. Option D: Set A and Set B are disjoint sets. Given relation R is not reflexive relation. How you will find the reflexive 6 closure to make the relation as reflexive relation. Option A: Add diagonal elements pair into the relation. Option B: Add upper triangular matrix elements into the relation Option C: Find the transpose of given matrix and add those pair into the relation Option D: Add lower triangular matrix elements into the relation

7.	$A = \{1,2,3,4\} R = \{ (1,1) (1,2), (2,3), (2,2), (3,3)(1,3), (4,4) \}$
Option A:	R is equivalence relation
Option B:	R represent poset (partially ordered sets)
Option C:	R is both partially order set and equivalence relation
Option D:	R is symmetric relation.
8	Which is true in case of isomorphic graph
Option A:	Two graphs to be isomorphic they should not have same no. of vertex.
Option B:	Two graphs to be isomorphic they should not have same no. of edges.
Option C:	Two graphs to be isomorphic every node of the graph should not have self-loop.
Option D:	Two graphs to be isomorphic they should not have one to one correspondence
	between the nodes.
9	If $n(A) = 20$ and $n(B) = 30$ and $n(A \cup B) = 40$ then $n(A \cap B)$ is?
Option A:	40
Option B:	50
Option C:	
Option D:	30
10	The graph in which, there is a closed trail which includes every edge of the
	graph is known as?
Option A:	Hamiltonian Graphs
Option A: Option B:	Hamiltonian Graphs Euler Graphs
Option A: Option B: Option C:	Hamiltonian Graphs Euler Graphs Planar graph
Option A: Option B: Option C: Option D:	Hamiltonian Graphs Euler Graphs Planar graph Directed Graph

Q3.	Solve any Two Questions out of Three 10 marks each
А	Apply Warshall's algorithm on the following graph and explain the need of Warshall algorithm.
В	Among 50 patients admitted to a hospital, 25 are diagnosed with pneumonia, 30 with bronchitis, and 10 with both pneumonia and bronchitis. Determine: (a) The number of patients diagnosed with pneumonia or bronchitis (or both). (b) The number of patients not diagnosed with pneumonia or bronchitis.
C	A bag contains 3 red balls and 4 black balls. A ball is drawn at random from the bag. Find the probability that the ball drawn is (i) black (ii) not black.

Q4	Solve any four Questions out of six 5 marks each
Α	Define injective, surjective and bijective function with diagram and suitable example.
B	Write the condition for semigroup, monoid and group.
\mathbf{C}	Define equivalence relation and partial order set with one suitable example
D	Define Pigeon hole principle with one example.
E	Draw Venn diagrams representing subset, set difference and symmetric difference.