N.B.: 1. Question No. 1 is compulsory.
2. Attempt any 3 more questions from remaining five.
3. Assume suitable data if necessary, and mention the same clearly.
4. Figures to the right indicate full mark.
5. Take $\boldsymbol{g}=9.81 \mathrm{~m} / \mathrm{s}^{2}$.

1. a) Forces F_{1}, F_{2}, F_{3} and F_{4} are acting on a particles. Find the force F_{4} so as to give the resultant of system of concurrent forces $\mathrm{R}=800 \mathrm{~N}$ as shown in figure.

b) A light fixture weighing 24 N is hung by a string as shown in figure. Determine the tensions in AC and BC of the string.

c) State various laws of friction.
d) The motion of a particle is defined by the relation $\mathbf{v}=\mathbf{4 t ^ { 2 } - 3 t - 1}$ where v is in m / s and t is in sec. If the displacement $x=-4 \mathrm{~m}$ at $\mathrm{t}=0$, determine the displacement and acceleration at $\mathrm{t}=3 \mathrm{sec}$.
e) A car travelling at a speed of $60 \mathrm{~m} / \mathrm{s}$ is braked and comes to rest in 10 seconds after the brakes are applied. Find the minimum coefficient of friction between the wheels and the road.
2. a) Two equal loads of 2500 N are supported by the flexible string $A B C D$ at point B and C.

Find the tension in the portion AB, BC and CD of the string.

b) Find the resultant of the force system on a body OABC as shown in figure. Also find the
points where the resultant will cut the X and Y axis.

c) If a ball is thrown vertically down with a velocity of $10 \mathrm{~m} / \mathrm{s}$ from a height of 3 m . Find the maximum height it can reach after hitting the floor, if the coefficient of restitution is 0.7 .
3. a) Determine the Centroid of the shaded area.

b) The 10 kg nasss slides from rest at A along the frictionless rod. Determine the speed at B . Stiffness of the spring $K=80 \mathrm{~N} / \mathrm{m}$. Unstretched length of spring is 0.3 m .

c) A force $\mathbf{F}=\mathbf{8 0} \mathbf{i}+\mathbf{5 0} \mathbf{j}-\mathbf{6 0 k}$ passes through a pont $\mathrm{A}(6,2,6)$. Compute its moment about origin.
4. a) Find support reactions at A and E for the beam loaded as shown in fig.

b) An aero plane flying horizontally with a velocity of $100 \mathrm{~m} / \mathrm{s}$ releases a packet which lands to the ground after 8 seconds. Find the velocity with which the packet lands.

Also find the height from which it was released.
c) A wheel of radius 0.75 m rolls without slipping on a horizontal stationary surface to the right. Determine the velocities of the points P and Q when the velocity of centre of the wheel is $25 \mathrm{~m} / \mathrm{s}$ to the right.

5. a) For the truss shown in Fig, determine :
i) Forces in members AB, BF and EF by method of sections only.
ii) Forces in all other members by method of joints.

b) A motorcycle starts from rest and accelerates at $2 \mathrm{~m} / \mathrm{s}^{2}$ till velocity reaches $10 \mathrm{~m} / \mathrm{s}$. Then it accelerates at $1 \mathrm{~m} / \mathrm{s}^{2}$ till velocity reaches $15 \mathrm{~m} / \mathrm{s}$ and continues at uniform velocity of $15 \mathrm{~m} / \mathrm{s}$ till it covers a total distance of 300 m . Find the total time taken to cover this distance. Draw the $\mathrm{v}-\mathrm{t}$ and x -t graph for this motion.
c) In the slider crank mechanism shown in fig, the crank AB of length 10 cm rotates anticlockwise with an angular velocity of $6 \mathrm{rad} / \mathrm{sec}$. The connecting rod BC is 45 cm in length and the slider at C is constrained to move along a horizontal line. At the instant shown, find the angular velocity of rod BC and velocity of slider at C .

6. a) Determine the force P to cause motion to impend. Take masses of blocks A and B as 8 kg and 4 kg respectively. Coefficient of static friction between sliding surfaces is 0.2 . Assume smooth pulley. The force P and the rope are parallel to the inclined plane.

b) Explain conditions for equilibrium for different system of forces in space.
c) A car starts from rest and moves along a circular path having a radius of 25 m . Its speed increases at a uniform rate of $0.5 \mathrm{~m} / \mathrm{s}^{2}$. Find the time from the start and distance travelled

Paper / Subject Code: 58502 / Engineering Mechanics.

when its resultant acceleration becomes $1.5 \mathrm{~m} / \mathrm{s}^{2}$.
d) Blocks $\mathrm{P}_{1}=4 \mathrm{~N}$ and $\mathrm{P}_{2}=8 \mathrm{~N}$ are connected by inextensible string. Find acceleration of the blocks. The coefficient of kinetic friction is 0.15 , pulley is frictionless.

