Duration: 3hrs [Max Marks: 80]

- N.B.: (1) Question No 1 is Compulsory.
 - (2) Attempt any three questions out of the remaining five.
 - (3) All questions carry equal marks.
 - (4) Assume suitable data, if required and state it clearly.

1 Attempt any FOUR

[20]

- a If x = 5.5436 find the values of absolute and relative error if
 - I. x is truncated to three decimal places
 - II. x is rounded to three decimal places
- b Solve the following system of equations using the Gauss elimination method

$$2x + 3y + 4z = 11$$

$$9x + 2y - 8z = 1.9$$

$$15x - 8y + 6z = 14.7$$

- Find the real root of $x \log_{10} x = 1.2$ correct to four decimal places using Newton-Raphson method.
- d Evaluate $I = \int_0^{\pi/2} \sqrt{\sin x} \, dx$ using Simpson's 1/3 rule with $h = \pi/12$
- e Consider an infinite string of linear density, m = 0.1 kg/m under a tension of T = 2.5N. Determine the wave speed when a small transverse displacement is set-up in the string.
- f Construct a histogram using a range from 7.5 to 11.5 with intervals of 1.0 for the data given below:

8.8	9.5	9.8	9.4	10.0
9.4	10.1	9.2	11.3	9.4
10.0	10.4	7.9	10.4	9.8
9.8	9.5	8.9	8.8	10.6
10.1	9.5	9.6	10.2	8.9

- 2 a Find a root of the equation $e^x cos x 1.2 sin x 0.5 = 0$ by Regula Falsi method [10] take $x_1 = 0$, and $x_2 = 1$.
 - b Fit a straight line for the following data:

[10]

X	3	26	3	4	5	6	7
У	0.5	2.3	2.1	4.2	3.6	5.8	5.5

And evaluate value of y at x = 4.5

3 a The velocity distribution of a fluid near a flat surface is given below

[10]

X	0.1	0.3	0.5 0.7 0.	9
V	0.72	1.81	2.73 3.47 3.9	98

x is the distance from the surface (cm) and y is the velocity (cm/sec). Using Newton's forward difference method obtain the velocity at x = 0.2, 0.4, 0.6, and 0.8

b Solve the following set of equations by using the LU decomposition method:

[10]

$$2x_1 + x_2 + x_3 = 7$$

$$X_1 + 2x_2 + x_3 = 8$$

$$X_1 + x_2 + 2x_3 = 9$$

4 a Solve the following differential equation by Adams-Moulton method, from t=0 [10] to 2 with h=0.50. Obtain y (2).

$$dy/dt = -10y, y(0)=1$$

b Explain Fuzzy Logic Systems architecture

[10]

5 a Apply Euler's method to solve $y' = -xy^2$, y(0) = 2 computing up to x = 1 with h = 0.1

?

b Given the points (0, 0), $(\pi/2, 0)$ and $(\pi, 0)$ satisfying the function:

[10]

$$y = \sin x$$
, $(0 \le x \le \pi)$

Determine the value of $y(\pi/6)$ using the cubic spline approximation.

6 a Obtain the numerical solution of 1-Dimensional wave equation using Crank Nicolson method.

[10]

b The differential equation $y' = x^2 + y^2 - 2$ satisfies the following data:

[05]

x	- 0.1	0.00	0.1	0.2
у	1.0900	1.0000	0.8900	0.7605

Use Milne's method to obtain the value of y(0.3)

c Explain Error Propagation.

[05]