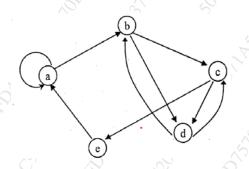
Time: 3 Hours

Marks: 80


5

5

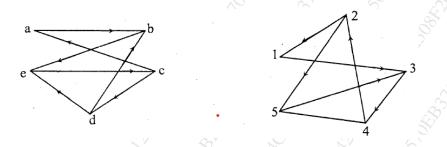
- N.B. : (1) Question Number 1 is compulsory
 - (2) Solve any three questions from the remaining questions
 - (3) Make suitable assumptions if needed
 - (4) Assume appropriate data whenever required. State all assumptions clearly.

Q.1 Solve any four of the following questions.

- a) Prove using Mathematical Induction that $1+5+9+\ldots+(4n-3) = n (2n-1)$
- b) Find the relation set & relation matrix for the following digraph. Determine in degree & out degree of each vertex.

- c) State the pigeon hole principle. If 30 people are assembled in a room, then show that of them must have their birthday on the same day of a week.
- d) Explain the following terms with suitable example:
 - i) Eulerian graph
 - ii) Quantifier
- e) What is a partial order relation? Determine the hasse diagram for following relation 5 A = $\{1, 2, 3, 4\}$ and R = $\{(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 4), (3, 3), (3, 4), (4, 4)\}$

Q.2


a) What is a transitive closure? Let $A=\{a1, a2, a3, a4, a5\}$. Find the transitive closure of R using Warshall's algorithm where relation matrix M_R is given as follows-**10**

 $\mathbf{M}_{\mathbf{R}} = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 \end{bmatrix}$

21108

Page 1 of 3

b) What are the isomorphic graphs? Determine whether following graphs are isomorphic.

Q.3

- a) Among the integers 1 to 300,
 - i) How many of them are not divisible by 3 nor by 5 nor by 7?
 - ii) How many of them are divisible only by 3?
- b) There are 6 Communication Skills books, 8 Engg. Mathematics books, 10 books on C Programming. How many ways can be used to choose 2 books of different categories from them?
- c) What is a partition set? Determine whether each of the following is a partition. Justify your answer. **6**

Let X = {1, 2, 3, ..., 8, 9}. Determine whether or not each of following is a partition (a) [{1, 3, 6, }, {2, 8}, {5, 7, 9}] (b) [{2, 4, 5, 8}, {1, 9}, {3, 6, 7}] (c) [{1, 5, 7}, {2, 4, 8, 9}, {3, 5, 6}]

(d) $[\{1, 2, 7\}, \{3, 5\}, \{4, 6, 8, 9\}, \{3, 5\}]$

Q.4

- a) What is a group? Let A={5, 10, 15, 20}
 - i) Prepare the composition table w.r.t. the operation of multiplication modulo 25.
 - ii) Whether it is an abelian group? Justify your answer.
 - iii) Find the inverses of all the elements.
 - iv) Whether it is a cyclic group?

b) What is a ring? Let A= {0, 1, 2, 3, 4, 5}. Determine whether a set A with addition modulo 6 & multiplication modulo 6 is a commutative ring? Justify your answer. 10

Q.5

- a) Define a lattice. Prove that in a distributive lattice the complement of any element is unique. Determine whether D_{105} is a distributive lattice. Find the complements of all elements. **8**
- b) Define the term bijective function. Let f: R—> R be a function defined by f(x) = 2x-3. Determine whether it is a bijective function.

Page 2 of 3

10

Paper / Subject Code: 50922 / Discrete Structures & Graph Theory

c)

Draw the graph G corresponding to each adjacency matrix

3	0	1	1	1	0		[0	1	2	ΟJ	
	1	1	<u>ч</u> ,	U	1			1	2		
(a) A =			1 0		(-)	0	1	2	2		
	0	0	0,	1	1	(b) A =	3	.0	·I	1	
							2	0		1	
							1	3	0	0	
	0	1.	0	1	0]		C .			_	

Q.6 a)

Let A = {2, 5, 9, 13, 16} R = {(2, 5), (2, 13), (16, 5), (16, 13), (9, 13), (5, 16)} S = {(2, 9), (2, 13), (5, 13), (9, 16), (5, 16)} Compute (i)S⁻¹ (ii) (R \cup S) \cap S⁻¹ (iii) $\overline{R} \cap$ S (iv) \overline{R}

b) What is a planer graph? A connected planer graph has 8 vertices having degrees 2,2,2,3,3,3,4,4. How many edges are there in this graph? 6

c) Write the following statements in a symbolic form using quantifiers. Assume a suitable data wherever applicable.
6

- i) All students have taken a course in mathematics.
- ii) There is a girl student in a class who is also a sports person.
- iii) Some students are intelligent, but not hardworking.