T4527 - B.E.(COMPUTER ENGG)(SEM VII)(REV-2012) (CBSGS) Digital Signal Processing

(3 hours)

QP CODE: 22974

Total Marks: 80

N.B.	2	. Question No. 1 is compulsory 2. Attempt any three out of remaining 3. Assume suitable data if necessary and justify the assumptions 4. Figures to the right indicate full marks	
Q1	A	Compare microprocessor with digital signal processor.	05
	В	State whether $x[n] = cos(3\pi n/4)$ is an energy or power signal with proper	05
		justification.	
	C	Find the cross correlation of two causal sequences $x[n] = \{2, 3, 1, 4\}$ and $y[n] = 3 \delta(n-3) - 2 \delta(n) + \delta(n-1) + 4 \delta(n-2)$.	05
	D	State BIBO stability criterion for LTI systems. Test the stability of the LTI systems, whose impulse response is: $h[n] = 0.2^n u[-n] + 3^n u[-n]$.	05
Q2	A	Check whether the system y[n]= a ⁿ u[n] is: i)Static or Dynamic ii)Linear or Non-linear iii)Causal or Non-Casual iv) Shift variant or Shift Invariant	10
	В	Consider analog signal $x(t) = 2 \sin 80\pi t$. If the sampling frequency is 60 Hz, find the sampled version of discrete time signal $x[n]$ also find an alias frequency corresponding to Fs = 60 Hz.	10
Q3	A	Determine the output response of the LTI system using tabular method , whose input is: $x[n]=1 ; n=0,1 \\ =3 ; n=2,3 \\ =0 ; elsewhere \\ and \ h[n]=\delta[n]-2\ \delta[n-1]+3\ \delta[n-2]-4\delta[n-3].$	10
200	В	Compute DFT of sequence $x[n] = \{0, 2, 3, -1\}$. Sketch the magnitude and	10
		phase spectrum.	
Q4	A	Explain the following properties of DFT: i)Periodicity ii)Linearity iii)Time Shift iv)Circular Convolution v)Time Reversal	10
	В	0'.45'	10

[TURN OVER]

QP CODE : 22974

Q5	A	In a LTI system the input $x[n] = \{1, 2, 1\}$ and impulse response is $h[n] = \{1, 3\}$. Determine the response of LTI system using radix- 2 DIT FFT method.	10
	В	Explain Parseval's energy theorem.	10
		If IDFT { $X(k)$ }= $x[n]$ ={2, 1, 2, 0} using DFT properties, evaluate the	
		following:	200
		i)IDFT of $\{X(k-1)\}$	
		ii)IDFT of {X(k) circularly convolved with X(k)}	
		iii)IDFT of $\{X(k).X(k)\}$	900
		iv)Signal energy	
Q6	A	Explain the significance of Carl's Correlation Coefficient Algorithm in digital signal processing. Evaluate Carl's Coefficient for two causal sequences $x[n]=\{3, 4, 7, 8\}$ and $y[n]=\{2, 1, 1, 2\}$.	10
	В	i) Compare 64 point DFT and FFT systems with respect to the number of complex additions and multiplications required.	5
		ii) Write a detailed note on biomedical applications of DSP processors.	5