University of Mumbai
 Examinations Summer 2022

Time: 2 hour 30 minutes
Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks
1.	The objective function for a L.P model is $3 \times 1+2 \times 2$, if $x_{1}=20 \& x_{2}=30$ what is the value of the objective function?
Option A:	0
Option B:	50
Option C:	60
Option D:	120
2.	An artificial variable leaves the basis means, there is no chance for the variable to enter once again.
Option A:	Slack
Option B:	Surplus
Option C:	Artificial
Option D:	Dual
3.	The order cost per order of an inventory is Rs 400 with an annuai carrying cost of Rs. 10 per unit. The economic order quantity (EOQ) for an annual demand of 2000 units is:
Option A:	500
Option B:	480
Option C:	400
Option D:	440
4.	If $E O Q=20$ units, order cost is Rs. 2 per order and carrying cost is Rs. 0.20 per unit, what is the usage in units?
Option A:	10
Option B:	16
Option C:	40
Option D:	80
5.	When using Monte Carlo simulation,
Option A:	the values of the variables generated by the simulation should approximate the values of the real-world variables
Option B:	the average values of the variables generated by the simulation should approximate the averages of the real-world variables.
Option C:	the averages of the variables generated by the simulation should be somewhat larger than the averages of the real-world variables.
Option D:	the averages of the variables generated by the simulation should be systematically smaller than the averages of the reai-world variables.
6.	If driver decides not to enter a lane as the traffic is slow and he has no time to wait, this behavior is called
Option A:	Reneging
Option B:	Faffing
Option C:	Jockeying
Option D:	Balking

	$\begin{array}{\|l} \hline \text { Construct the dual to the primal problem- } \\ \text { Maximize } \mathrm{z}=3 \mathrm{x}_{1}+5 \mathrm{x}_{2} \\ \text { Subjeci to }: 2 \mathrm{x}_{1}+6 \mathrm{x}_{2} \leq 50 \\ 3 \mathrm{x}_{1}+2 \mathrm{x}_{2} \leq 35 \\ 5 \mathrm{x}_{1}-3 \mathrm{x}_{2} \leq 10 \\ \\ \mathrm{x}_{2} \leq 20 \\ \mathrm{x}_{1}, \mathrm{x}_{2} \geq 0 \\ \hline \end{array}$								
7.									
Option A:	$\begin{array}{\|l} \text { Minimize } \mathrm{w}=50 \mathrm{y}_{1}+35 \mathrm{y}_{2}+10 \mathrm{y}_{3}+20 \mathrm{y}_{4} \\ \text { Subject to: } 2 \mathrm{y}_{1}+3 \mathrm{y}_{2}+5 \mathrm{y}_{3} \geq 3 \\ 6 \mathrm{y}_{1}+2 \mathrm{y}_{2}-3 \mathrm{y}_{3}+\mathrm{y}_{4} \geq 5 \\ \text { Corresponding dual variables } \mathrm{y}_{1}, \mathrm{y}_{2}, \mathrm{y}_{3}, \mathrm{y}_{4} \geq 0 \end{array}$								
Option B:	$\begin{aligned} & \text { Maximize } \mathrm{w}=50 \mathrm{y}_{1}+35 \mathrm{y}_{2}+10 \mathrm{y}_{3}+20 \mathrm{y}_{4} \\ & \text { Subject to: } 2 \mathrm{y}_{1}+3 \mathrm{y}_{2}+5 \mathrm{y}_{3} \geq 3 \\ & 6 \mathrm{y}_{1}+2 \mathrm{y}_{2}-3 \mathrm{y}_{3}+\mathrm{y}_{4} \geq 5 \\ & \\ & \text { Corresponding dual variables } \mathrm{y}_{1}, \mathrm{y}_{2}, \mathrm{y}_{3}, \mathrm{y}_{4} \geq 0 \end{aligned}$								
Option C:	$\begin{array}{\|l} \text { Minimize } \mathrm{w}=50 \mathrm{y}_{1}+35 \mathrm{y}_{2}+10 \mathrm{y}_{3}+20 \mathrm{y}_{4} \\ \text { Subject to: } 2 \mathrm{yy}_{1}+3 \mathrm{y}_{2}+5 \mathrm{y}_{3} \leq 3 \\ \\ \text { Sy } \\ \text { Corresponding dual variables } \mathrm{y}_{1}, \mathrm{y}_{2}-3 \mathrm{y}_{3}, y_{3}, y_{4} \leq 5 \\ \\ \text { C } \geq 0 \end{array}$								
Option $\overline{\mathrm{D}}$:	$\begin{array}{\|l} \text { Maximize } \mathrm{w}=50 \mathrm{y}_{1}+35 \mathrm{y}_{2}+10 y_{3}+20 \mathrm{y}_{4} \\ \text { Subject to: } 2 \mathrm{y}_{1}+3 \mathrm{y}_{2}+5 \mathrm{y}_{3} \leq 3 \\ 6 \mathrm{y}_{1}+2 \mathrm{y}_{2}-3 \mathrm{y}_{3}+\mathrm{y}_{4} \leq 5 \\ \text { Corresponding dual variables } \mathrm{y}_{1}, \mathrm{y}_{2}, \mathrm{y}_{3}, \mathrm{y}_{4} \geq 0 \\ \hline \end{array}$								
8.	What is the optimal processing time for the below mentioned assignment model? The matrix entries represent the processing times in hours.								
		Operator ${ }^{\text {a }}$ O							
	Job$\frac{1}{2}$ $\frac{2}{3}$ $\frac{4}{5}$ 		1	2		3		4	5
		1	9	11		14		11	7
		2	6	15		13		13	10
		3	12	13		6		8	8
		4	11	9		10		12	9
		5	7	12		14		10	14
Option A:	30 hours								
Option B:	38 hours								
Option C:	45 hours								
Option D:	52 hours								
9.	Find the value of the game-$\begin{aligned} & \end{aligned} \quad$ Player B								
					1		II		
	Player A		I		9		2		
			II		8		6		
			III		6		4		
Option A:	4								
Option B:	2								
Option C:	6								
Option D:	8								

10.	In dynamic programming, the output to stage n become the input to
Option A:	stage $\mathrm{n}-\mathrm{l}$.
Option B:	stage n itself.
Option C:	stage $\mathrm{n}+1$.
Option $\mathrm{D}:$	stage $\mathrm{n}-2$.

Q3.	Solve any Two Questions out of Three				10 marks each
(1)	A TV manufacturing company has three production units and 4 main distribution centers. Cost of transporting one unit from each production unit to distribution centre is given in the matrix. The production capabilities of production units A, B and C are 60,75 and 105 respectively and the requirements of distribution centre are $50,65,75$ and 100 respectively. Determine the optimal distribution policy. Use VAM to find initial solution and MODI for finding optimal solution.				
	Distribution Centre				
	Plants	W	X	Y	Z
	A	17	20	14	12
	B	15	21	25	14
	C	15	14	15	16
B	A paricular item has a demand of 9,000 units/year. The cost of one procurement is $₹ 100$ and the holding cost per unit is ₹ 2.40 per year. The replacement is instantaneous and no shortages are allowed. Determine-				

Q4.	Solve any Two Questions out of Three A company manufactures 30 units per day. The sale of these items depends upon demand which has the following distribution							
A								
	Sales		27	28	29	30	31	32
	Proba	bility	0.10	0.15	0.20	0.35	0.15	0.05
	The production cost and sale price of each units are Rs 40 and Rs. 50 respectively. Any unsold product is to be disposed off at a loss of Rs. 15 per unit. There is a penalty of Rs. 5 per unit if demand is not met using the following Monte Carlo simulation technique, estimate the total profit loss for the company for the next 10 days. If the conipany decides to produce 29 units per day, what is the advantage or disadvantage to the company? Random numbers - $1470,9283,6264,3555,9743,2506,7959,5352$, $6912,4167,7984,8579,2486,0788,8872.6599,9769,4629$, 3246,1781.							
B	Solve the following L.P.P. using the simplex method Maximize $\mathrm{z}=2 \mathrm{x}_{1}+5 \mathrm{x}_{2}$ Subject to: $x_{1}+4 x_{2} \leq 24$ $\begin{aligned} & 3 x_{1}+x_{2} \leq 21 \\ & x_{1}+x_{2} \leq 9 \\ & x_{1}, x_{2} \geq 0 \end{aligned}$							
C	Use graphical method to minimize the time required to process the following jobs on the machines. For each machine specify the job which should be done first. Also calculate the total elapsed time to complete both jobs.							
				Machines				
	Job 1	Seque		A	B	C	D	E
		Time	ours)	6	8	4	12	4
	Jot ?	Seq		B	C	A	D	E
		Time	curs)	10	8	6	4	12

Q
Searchall conversctions

Compose

Mail
Correction in Q.P. Code: 00090659 Extemal Imbox x Inbox 225

Starred
Snoozed

Chat

No conversations
Start a chat
Spaces

\tan

No spaces yet
Create or find a space

Meet

support@muapps.in via amazonses.com
to me

University of Mumbai

Correction in Q.P. Code: 00090659
Course Name: Operation Research (ILOC)

There is a correction in Que. 4 A .
20 Random no are given, consider the first 10 random no. only to solve the question.

