Paper/Subject Code: 29702/Applied Physics - II. Date - 10/12/19 F.E. (All Branches) CCB) (Sem-II)

(2 Hours)

[Total Marks : 60

- 1) Question no.1 is compulsory
- 2) Attempt any three questions from Q.2. TO Q. 6
- 3) Use suitable data wherever required.
- 4) Figures to the right indicate full marks.
- 1. Attempt any five of the following
 - a) Why does an excessively thin film appear to be perfectly dark when illuminated **15** by white light.
 - b) In a plane transmission grating the angle of diffraction for the first order principal maximum is 20⁰ for a wavelength of 6500A⁰. Calculate the number of lines in one cm of the grating surface.
 - c) Explain the term V-number of an optical fibre.
 - d) Differentiate between Spontaneous Emission & Stimulated Emission
 - e) Show that divergence of the curl of a vector is zero.
 - f) An electron is accelerated through a potential difference of 18 Kv in a colour Cathode ray tube.Calculate the kinetic energy & the speed of the electron.
 - g) What will happen when a liquid is introduced between the plano convex lens and glass plate in Newton's rings experiment.
- 2. (a) What do you mean by thin film? Obtain the conditions for the maxima and minima 8 of the light reflected from a thin transparent film of uniform thickness
 - (b) Explain Step index and Graded index fibres. A Step Index fibre has a core 7 diameter of 2.9*10⁻⁶ m, the refractive indices of core & claddings are 1.52 &1.5189 resply. If the light of wavelength 1.3 μm is transmitted through the fibre determine the normalized frequency & number of modes supported by the fibre.
- 3. (a) With neat energy level diagram describe the construction and working of Nd-Yag 8 laser
 - (b) What is grating element. The visible spectrum ranges from 4000 A⁰ to 5000 A⁰.
 7 Find the angular breadth of the first order visible spectrum produced by a plane grating having 6000 lines/cm when light is incident normally on the grating

78343

Page 1 of 2

2337C0CD50FE594F32A7EB635D25A865

Paper / Subject Code: 29702 / Applied Physics - II.

4.	(a)	Explain with neat diagram, construction and working of SEM.	5
	(b)	Explain spherical co-ordinate system? State the transformation relation between	5
		Cartesian and Spherical coordinates	
	(c)	What is Holography? Distinguish between holography and ordinary photography?	5
5.	(a)	Show that diameter of Newton's dark ring is directly proportional to square root of natural number?	5
	(b)	What are the different techniques to synthesise nanomaterial & explain one of them in detail.	5
	(c)	In a Newton's rings experiment the diameter of n^{th} and $(n+12)^{th}$ rings are 4.3mm and 6.8mm respectively. Radius of curvature of plano-convex lens is 1m. Find the wavelength of light.	5
6.	(a)	Explain the physical significance of divergence and curl of a vector field?	5
	(b)	State Bethe's law and explain electrostatic focusing of electron beam?	5
	(c)	Two glass plates enclose a wedge –shaped air film touching at one edge are separated by wire of 0.03mm diameter at distance 15 cm from the edge	5

separated by wire of 0.03mm diameter at distance 15 cm from the edge. Monochromatic light of Wavelength λ =6000A° from a broad source falls normally on the film .Calculate the fringe width.

78343

Page 2 of 2

2337C0CD50FE594F32A7EB635D25A865