		Paper / Subject Code: 41202 / Fluid Mechanics		
T	ime:	3 hours Marks: 80	80	
N.B.				
	1.	Question No. 1 is compulsory.		
	2.			
		Neat diagram must be drawn wherever necessary.		
	4.	Assume suitable data if necessary and state clearly.		
Q.1		Answer any four of the following.		
	a	What is effect of temperature on the Viscosity of water and air?	5	
	b	A stream function is given by $\psi = 5x - 6y$. Calculate the velocity component also the magnitude and direction of the resultant velocity at any point.	5	
	c	Explain the working of Orifice meter.	5	
	d	Define Reynold's number and the significance.	5	
	e	Define the terms: Major energy losses and minor energy losses in pipe.	2) 3	
Q.2	a	A triangular plate of 1 meter base and 1.5 meter altitude is immersed in water. The plane of the plate is inclined of 30^0 with free water surface and the base is parallel to and at a depth of 2 meters from the water surface. Find the total pressure on the plate and the position of the center of pressure.	10	
	b	Describe Buckingham's method or π – theorem to formulate a dimensionally homogenous equation between the various physical quantities a a certain phenomenon.	10	
Q.3	a	Describe expression for flow of viscous fluid through a circular pipe for velocity distribution across the pipe section.	10	
	b	Water at the rate of 30 litres /sec is flowing through a 0.2 m. I.D pipe. A venturimetre of	10	
		throat diameter 0.1 m is fitted in the pipeline. A differential manometer in the pipeline has an indicator liquid M and the manometer reading is 1.16 m. What is the relative density of the manometer liquid M? Venturi Co-efficient = 0.96 ; density of water = 998 kg/m^3 .		
Q.4	a	Derive an expression for total pressure and the depth of the center of pressure from the free surface liquid inclined plane surface submerged in the liquid.	10	
	b	250 litres/ sec of water is flowing in a pipe having a diameter of 300 mm. If the pipe is bent by 135 ⁰ , find the magnitude and direction of the resultant force on the bend. The pressure of the water flowing is 400 kNm ² . Take specific weight of water as 9.81 kN/m ³ .	10	
Q.5	a	The diameter of a horizontal pipe which is 300 mm is suddenly enlarged to 600 mm the rate of flow through this pipe is 0.4 m ³ /s. If the intensity of pressure in the smaller pipe is	10	

- 125 kN/m². Determine:
 - i) Loss of head due to sudden enlargement
 - ii) Intensity of pressure in the larger pipe
 - iii)Power lost due to enlargement
 - Explain Reynold's Transport Theorem with its proof.

Three pipes with details as following are connected in parallel between two points.

Pipe	Length	Diameter	f
10,	1000 m	20 cm	0.02
2	1200 m	30 cm	0.015
3	800 m	15 cm	0.02

When the total discharge of 0.3 m³/s flows through the system, calculate the distribution of discharge and head loss between the junction.

Explain the Boundary Layer Separation and methods to avoid it.

10

10

10