Paper / Subject Code: 51402 / Logic Design

S.E. (IT) (Sem -III) (CB)

Dav	10-1	14	5	19

(Time: 3 Hours)	[Total Marks: 80]
 N.B.: (1) Question No. 1 is compulsory. (2) Solve any three questions out of remaining five. (3) Figures to right indicate full marks. 	
(4) Assume suitable data where necessary.	
Q1. Solve any foura) Explain DC operating point and its variation with the help of output of transistor	20 characteristics of
 b) Convert S-R flip flop to J-K flip flop. c) Design Ex-OR gate using NAND and NOR gates. d) Design full substractor using half substractor and additional gates. e) Convert following decimal number to Binary ,Octal, Hexadecimal an i) (345)₁₀ ii)(818)₁₀ 	d Gray code
Q2. a) Explain collector to base bias Circuit with its stability factor.b) Minimize the following four variable logic function using K-map a	10 and Design using
only NAND gates.	10
$f(A,B,C,D) = \sum m (0,1,2,3,5,8,9,10,11,12,14)$	
Q3. a) Design 4-bit binary to gray code conversion using basic gates.	10
b) i) Implement following using only one 8:1 Multiplexer and few gate	es.
$F(A,B,C,D) = \sum m(1,3,4,5,8,9,12,15)$	
ii) With neat logic diagram explain in short operation of Universal Shift R	egister. 10
Q4. a) Design a Mod 10 synchronous counter using J-K Flipflop.	10
b) Using Quine MC Cluskey Method determine Minimal SOP form for $F(A,B,C,D) = \sum m(0,1,2,5,6,7,8,9,10,14)$	10
Q5. a) Explain about ENTITY declarations in VHDL and write VHDL program OR gates.b) Implement 3 bit asynchronous u p counter and also sketch the timing dia	n for NAND and 10 gram. 10
 Q6 Solve the following- a) Explain working of 8:1 Multiplexer. b) Working of S-R flip flop(with its internal circuit diagram and the c) Explain working of Constant Current source. 	20 ruth table).

d) Write VHDL program for full substractor.

5E3DE25E6A27B8E7164E07E6054AD47D