Paper / Subject Code: 32203 / Electromagnetic Engineering

T.E. CEXTC) CSem-V) (CB)

Duration: 3 Hours

- 1] Question no. 1 is Compulsory
- 2] Attempt any three questions out of remaining questions
- 3] Assume suitable data if require

Q.1 Attempt any four

- a) Explain Wave equation for free space.
- **b**) Calculate Divergence and Curl of $\overline{F} = r \cos \varphi \, \overline{a_r} + r z^2 \overline{a_{\varphi}}$ Units
- c) Derive Faraday's Law with suitable applications.
- d) Derive Laplacian's Equation for charge free dielectric region.
- e) Explain Reflection Coefficient of Transmission lines.
- f) Explain Gauss's Law in detail with applications.
- g) Derive relationship between Electric field and Voltage.

Q. 2

- a) Derive magnetic field provided by infinite thin filament caring current I suspended on 'z' axis. Also, provide significance over short filament. 10
- b) Calculate input impedance of the lossless transmission line terminated by load impedance of $Z_L = 100 + 100j \Omega$ in $Z_0 = 50 \Omega$ system with length of $l = 0.35\lambda$ with f = 3GHz, air as dielectric for transmission (Either by theoretical method or by Smith chart). 10

Q. 3

- a) Find out total Electric field at Origin because of following charge distributions: 10
 - Point charge of 20*nC* placed at (-1, -2, -3)
 - Point charge of 50nC placed at (-2, -3, -4)
 - Uniform infinite line charge of 2nC/m placed at x = -5, z = -6
 - Uniform infinite surface charge of $0.5nC/m^2$ placed at z = -5
- b) Explain Point and Integral format of Time Varying field Maxwell's Equation with appropriate examples.

Q. 4

a)

- If plane interface between two perfect dielectric mediums is located at z = 0. A 4GHz uniform planar wave travelling along z axis is incident from region 1, $z \le 0$ onto region 2, $z \ge 0$. The wavelength in dielectrics are $\lambda_1 = 6cm$ and $\lambda_2 = 4cm$. Both the materials are non-magnetic. What are the percentage of energy on boundary is:
 - Reflected
 - Transmitted
 - Standing wave ratio in region 1
- b) Aircraft antenna radiates Electric field in air ($\sigma = 0, \mu = \mu_0, \varepsilon = \varepsilon_0$) which is $\overline{E} = 25 \cos(10^9 t + 0.33x)\overline{a_y} \ KV/m$ find out following terms related with this EM System:
 - Propagation constant (k)
 - Phase Velocity
 - Intrinsic Impedance (η)
 - Average Poyting Power
 - Magnetic Field (\overline{H})

59536

Page **1** of **2**

17E36DB05955128D9E32F0CE5F962426

Marks: 80

20

10

10

Date -21/5/19

Q. 5

- a) Two plates of cylindrical capacitor describe by their radius $\rho_1 = 1mm \& \rho_2 = 1mm$ holding voltage of $V_1 = 1V$ and $V_2 = 100V$ find out \overline{E} in capacitor, also prove that dielectric of capacitor dose not carries any charge.
- b) Derive Poynting Vector and explain effects of medium parameters on EM power with suitable diagram
 10
- Q. 6 Write short note on
 - a) Super Conductivity
 - b) Helmholtz's Equation
 - c) Wave equation for transmission line
 - d) Electrical Discharge

59536

Page **2** of **2**

17E36DB05955128D9E32F0CE5F962426

20