B.E. (ExTC) (Sem_VIII) (CBCGS) RF Design

EXTO

University of Mumbai Examinations Summer 2022

Paper <-92111

Time: 2 hour 30 minutes

Max. Marks: 80

Choose the correct option for following questions. All the Questions are compulsory and carry equal marks [20]				
In RF receiver application the preamplifier has				
Maximum gain amplifier				
Low noise amplifier				
Specific gain amplifier				
Class A power amplifier				
To design a maximally flat low pass filter with fc= 2 GHz, impedance of 50 Ω and at least 10 dB IL at 3 GHz the order N is				
2				
3				
5				
6				
is a technique a technique that reduces or prevents coupling of undesired radiated electromagnetic energy into equipment to enable it to operator compatibility in its electromagnetic environment.				
Filtering				
Grounding				
Shielding				
Bonding				
Direct digital frequency synthesis is obtained by solving digital recursion relationship using a general purpose computer or				
Direct frequency synthesis				
A PLL-DDFS combination				
Multiple loop indirect synthesis				
Sorting sine waves in look up table				
Inductor is replaced with and capacitor is replaced with of $\lambda/8$ line in Richard's transformation.				
Short stub and open stub				
Shunt capacitor and series indctor				
Shunt inductor and series capacitor				
Series Capacitor and series inductor				
How instability can be created in oscillator design?				
Using capacitor in feedback				
Using positive feedback				
Using negative feedback				
Using feed forward feedback				
is not a EMC standard,				
CJNU FM				
O 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				

	CEPDED) (TITUE WOOD) (OTX DESIGNED)		
	Maje O esta		
Option C	MIL- STD 461 D		
Option D	VDE > 100		
8	The maximum unilateral gain is a function of		
Option A	Source reflection coefficient		
Option B	S parameters of transistors		
Option C	Load reflection coefficient		
Option D	Source and load reflection coefficients		
9	Select one which is not a method of frequency synthesis,		
Option A	Frequency synthesis by modulus divider		
Option B	Direct frequency synthesis		
Option C	Compressed frequency synthesis		
Option D	Frequency synthesis by PLL		
10	Is it possible to use normal smith chart for reading input impedance for reflection coefficient greater than one		
Option A	Only possible for certain values of reflection coefficient		
Option B	Possible		
Option C	Not possible		
Option D	Possible if magnitude of reflection coefficient is less than 5		
Option D	7 OSSIDIE II Magintude of Tenection coefficient is less than 3		

and the same of th			
Q.2			
\mathbf{A}	Solve any two 5 marks each		
i	Draw one port oscillator circuit. Find value of R _L which maximizes oscillator power.		
ii	Draw two port amplifier Define various gains with equations.		
iii	Describe single balanced mixer using 90 hybrid coupler with neat diagram.		
В	Solve any one 10 marks each		
i	A GaAs FET has the following scattering and noise parameters at 4 Ghz measured with 50 Ω system $S_{11} = 0.6 \angle -60^{\circ}$, $S_{12} = 0.05 \angle -26^{\circ}$, $S_{21} = 1.9 \angle 81^{\circ}$, $S_{22} = 0.5 \angle -60^{\circ}$, Fmin=1.6dB, Rn = 20Ω and Γ opt =0.62 \angle 100° Assuming the FET to be unilateral .design an amplifier for maximum possible gain and noise figure not more than 2dB.		
ii	Design a composite low pass filter by image parameter method for following specifications $R_o = 50 \ \Omega$ $f_c = 50 \ MHz$. $f_\infty = 52 \ MHz$		

Q3			
Α	Solve any two	5 marks each	
i	Compare design difference in amplifier and oscillator.		
ii	Explain the characteristics of power amplifier,		
iii	Explain the terms insertion loss, shape factor, quality factor, rejection in filter.		
, B	Solve any one	10 marks each	
	Design a two port transistor oscillator at 6 GHz using FET in common source configuration driving 50 Ω load ondrain sideS ₁₁ = 0.9 \angle -150 ⁰ , S ₁₂ = 0.2 \angle -15 ⁰ , S ₂₁ = 2.6 \angle 50 ⁰ , S ₂₂ = 0.5 \angle -105 ⁰ . Calculate and plot stability circles and choose Γ t for Γ in>> 1. Design load terminating network		
ii	An N=3 Chybyshev bandpass filter is to be designed with 3 dB pa communication link The centre frequency is at 2.4 GHz and filter I requirement of 20%. The filter has to be inserted into 50 Ωcharacters.	as to meet bandwidth	

Q4			
A	Solve any two	5 marks each	
i	What are the sources of EMI and effects of EMI,		
ii	Explain differential FET mixer with diagram.		
iii	Write a note on safety grounding.		
В	Solve any one	10 marks each	
i	S parameters of properly biased HFET-1101 measured using 50 Ω network analyzer at 6 GHz $S_{11} = 0.614 \angle -167.4^{\circ}$ $S_{12} = 0.046 \angle 65^{\circ}$, $S_{21} = 2.18 \angle 32.4^{\circ}$, $S_{22} = 0.716 \angle -83^{\circ}$		
	Design an amplifier using this for maximum possible gain	, 322 —0.716Z -83°	
ii	A one port oscillator uses a negative resistance diode having desired operating point for f= 6GHz. Design load matching	g Γ in =1.25 \angle 40 Zo=50 Ω at its network.	