(3 Hours) [Total Marks: 80]

## **N.B.**: 1) Question No. 1 is **Compulsory**.

- 2) Answer any THREE questions from Q.2 to Q.6.
- 3) Figures to the right indicate full marks.
- Q.1 (a) If  $\lambda$  is eigen value of A and X is corresponding eigen vector of  $\lambda$  then show (5) that  $\lambda^n$  is eigen value of  $A^n$  and corresponding eigen vector is X (n>0).

(b) Evaluate 
$$\int_{C} \frac{z^2 - 2z + 4}{z^2 - 1} dz$$
, where C is  $|z - 1| = 1$ . (5)

- (c) Find the extremals of  $\int_{x_1}^{x_2} (1+x^2y^2)y^2 dx.$  (5)
- (d) Find a unit vector orthogonal to both u = (-3,2,1) and v = (3,1,5). (5)
- Q.2 (a) Find eigen values and eigen vectors of  $A^2 + 2I$  where  $A = \begin{bmatrix} 8 & -8 & -2 \\ 4 & -3 & -2 \\ 3 & -4 & 1 \end{bmatrix}$ . (6)
  - (b) Find the extremals of  $\int_{x_0}^{x_2} [(y^x)^2 y^2] dx$ . (6)
  - Obtain Laurent's series expansion of  $f(z) = \frac{4z+3}{z^2-z-6}$  at z=1. (8)
- Q.3 (a) Using Rayleigh-Ritz method find solution for the extremal of the functional  $\int_{0}^{1} \left[ (y')^{2} 2y 2xy \right] dx \text{ with } y(0) = 2 \text{ and } y(1) = 1.$ 
  - (b) Evaluate  $\int_{0}^{\infty} \frac{1}{(x^2+1)(x^2+9)} dx$ . (6)
  - (c) Show that matrix  $A = \begin{bmatrix} -9 & 4 & 4 \\ -8 & 3 & 4 \\ -16 & 8 & 7 \end{bmatrix}$  diagonalizable. Also find diagonal and transforming matrix. (8)

[Turnover]

- Q.4 a) Verify Cayley Hamilton Theorem for  $A = \begin{bmatrix} 1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & -2 & 1 \end{bmatrix}$ . Also find  $A^{-1}$ . (6)
  - (b) Using Cauchy's Residue Theorem evaluate  $\int_{0}^{2\pi} \frac{d\theta}{3 + 2\cos\theta}.$  (6)
  - Show that the extremal of isoperimetric problem  $I = \int_{x_1}^{x_2} (y')^2 dx$  subject to the condition  $\int_{x_1}^{x_2} y dx = k$  is a parabola.
- Q.5 (a) Find  $5^A$  where  $A = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}$ . (6)
  - (b) Find an orthonormal basis for the subspace of  $R^3$  by applying Gram-Schmidt process where  $S = \{(1, 1, 1), (-1, 1, 0), (1, 2, 1)\}$
  - (c) Reduce the following quadratic form into canonical form and hence find its rank, index, signature and value class  $Q = 5x_1^2 + 26x_2^2 + 10x_3^2 + 6x_1x_2 + 4x_2x_3 + 14x_3x_1.$ (8)
- Q.6 (a) State and prove Cauchy-Schwartz inequality. Hence show that for real values of  $a, b, \theta \left(a\cos\theta + b\sin\theta\right)^2 \le a^2 + b^2$ .
  - (b) Show that any plane through origin is a subspace of  $R^3$ . (6)
  - (c) Find the singular value decomposition of  $A = \begin{bmatrix} 4 & 4 \\ -3 & 3 \end{bmatrix}$ . (8)