T0131 - F.E.(ALL BRANCHES) (Choice Base) SEMESTER - I Applied Mathematics I

Q.P. Code: 24851

[Time: Three Hours]

[Marks: 80]

Please check whether you have got the right question paper.

N.B:

- 1. Question No.1 is compulsory.
- 2. Answer any three from the remaining.
- 3. Figures to the right indicate marks.

Q.1. a. Separate into real part and imaginary of
$$Cos^{-1}\left(\frac{3i}{4}\right)$$

03

b. Show that the matrix A is unitary where $A = \begin{bmatrix} \alpha + i\gamma & \beta + i\delta \\ \beta + i\delta & \alpha + i\gamma \end{bmatrix}$ is unitary if $\propto^2 + \beta^2 + \gamma^2 + \delta^2 = 1$

03

C. If $z = \tan (y + ax) + (y - ax)^{3/2}$ then show that $\frac{\partial^2 z}{\partial x^2} = a^2 \frac{\partial^2 z}{\partial y^2}$

03

d. If x = uv $y = \frac{u}{v}$ Prove that $JJ^{I} = 1$

03

e. Find the nth derivative of $\frac{x^3}{(x+1)(x-2)}$

04

04

f. Using the matrix $A = \begin{bmatrix} -1 & 2 \\ -1 & 1 \end{bmatrix}$ decode the message matrix $C = \begin{bmatrix} 4 & 11 & 12 - 2 \\ -4 & 4 & 9 - 2 \end{bmatrix}$

Q.2. a. If $sin^4\theta cos^3\theta = a cos\theta + b cos 3\theta + C cos 5\theta + d cos 7\theta$ then find a, b, c, d.

06

b. Using Newton Raphson method Solve 3x - Cosx - 1 = 0 Correct to 3 decimal places.

06

08

c. Find the stationary points of the function $x^3+3xy^2-3x^2-3y^2+4$ & also find maximum and minimum values of the function.

06

Q.3. a. Show that

 $x \csc x = 1 + \frac{x^2}{6} + \frac{7}{360}x^4 + \cdots$

06

b. Reduce matrix to PAQ normal form and find 2 non Singular matrices P & Q

 $\begin{bmatrix} 1 & 2 & -1 & 2 \\ 2 & 5 & -2 & 3 \\ 1 & 2 & 1 & 2 \end{bmatrix}$

c. If y= cos (m sin⁻¹x) Prove that $(1-x^2)y_{n+2} - (2n+1)xy_{n+1} + (m^2-n^2)y_n = 0$

80

- **Q.4. a.** State and prove Euler's theorem for three Variables.
 - 06 **b.** Show that all the roots of $(x+1)^6 + (x-1)^6 = 0$ are given by $-i\cot\frac{(2k+1)\pi}{12}$ where

06

c. Show that the equations

k = 0,1,2,3,4,5

Show that the equations
$$-2x + y + z = a$$

$$x - 2y + z = b$$

$$x + y - 2z = c$$

have no solutions unless a + b + c = 0 in which case they have infinitely many solutions.

Find these Solutions when a = 1 b = 1 c = -2

- **Q.5.** a. If z = f(x, y) $x = r \cos \theta$ 06 $y = r \sin \theta$ Prove that $\left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2 = \left(\frac{\partial z}{\partial r}\right)^2 + \frac{1}{r^2} \left(\frac{\partial z}{\partial \theta}\right)^2$
 - **b.** If $cos hx = sec \theta$ Prove that 06 $x = \log(\sec\theta + \tan\theta)$
 - $\theta = \frac{\pi}{2} 2tan^{-1}(e^{-x})$ ii)
 - c. Solve by Gauss Jacobi 80 Iteration method 5x - y + z = 102x + 4y = 12x + y + 5z = -1
- Q.6. a. Prove that 06 $cos^{-1}[tan h(log x)] = \pi - 2\left(x - \frac{x^3}{3} + \frac{x^5}{5} - - - - -\right)$
 - **b.** If $y = e^{2x} \sin \frac{x}{2} \cos \frac{x}{2} \sin 3x$ Find y_n 06
 - (i) Evaluate Lim $(Cot x)^{sin x}$ 04 $x \to 0$
 - (ii) Prove that $log\left[\frac{\sin(x+iy)}{\sin(x-iy)}\right] = 2i \ tan^{-1}(\cot x \tan hy)$ 04