University of Mumbai

Examination Second Half 2021 under cluster \qquad
Examinations Commencing from-------- 2022 to 2022
Program: Computer Engineering
Curriculum Scheme: Rev2019
Examination: TE Semester V
Course Code: CSDLO5011 and Course Name: Probabilistic Graphical Models
Time: 2 hour 30 minutes
Max. Marks: 80

Q.1	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks
1.	Bayesian network consists of
Option A:	Directed Acyclic Graph
Option B:	Table of conditional probabilities
Option C:	Dependency between Variabies
Option D:	All of the above
2.	Which algorithm is used for solving temporal probabilistic reasoning?
Option A:	Hill Climbing Algorithm
Option B:	Hidden Markov Model
Option C:	Depth-first search
Option D:	Breadth-first search
3.	An HMM is a temporal probabilistic model in which the state of the process is described by a 3. Option A: Single discrete random variable
Option B:	Single random variable
Option C:	Single continuous random variable
Option D:	Multiple random variable
4.	Which amongst the following is a Non-Temporal Model?
Option A:	Linear Dynamic Systems
Option B:	Static Bayesian Network
Option C:	Kalman Filters
Option D:	Hidden Markov Model
5.	Find the incorrect statement. Bayesian (BN) versus Markov Network (MN)
Option A:	In BN, we use conditional probability as factors. In MN also, we use conditional probability
Option B:	In MN, we want to capture the affinity by a real number. In BN the factors are probability between 0 and $~$
Option C:	MN is restricted to discrete state space while BN can be both discrete and

	continuous
Option D:	Unlike BN which have directed edges and clear directions of causality, MN have undirected edges and only encode associations
6.	The weighted average of all possible outcomes of a project, with the probabilities of the outcomes used as weights, is known as the:
Option A:	Variance
Option B:	Standard deviation
Option C:	Expected value
Option D:	Coefficient of variation
7.	Learning a graphical model involves
Option A:	Only Structural Learning
Option B:	Only Parameter Learning
Option C:	Both Structural and Parameter Learning
Option D:	None of the above
8.	If the various probabilities are given as: $P(B 1)=P(B 2)=P(B 3)=P(B 4)=1 / 4$ and $P(D / B 1)=0.05, P(D / B 2)=0.4, P(D / B 3)=0.1, F(D / B 4)=0.1$. Find $P(B 2 / D)$.
Option A:	13/80
Option B:	13/8
Option C:	8/13
Option D:	0
9.	Causal Chains(For example Smoking Causes Cancer, which in turn causes dyspnea) gives rise to
Option A:	Conditional Independence
Option B:	Conditional Dependence
Option C.	Gibbs Distribution
Option D:	Joint Distribution
10.	The probability transition matrix for a given markov chain is as follows The initial distribution given is $(1 / 3,1 / 3,1 / 3)$ Find the probability of $\mathrm{P}(\mathrm{X} 2=2, \mathrm{X} 1=1 \mid \mathrm{X} 0=2)$ P is 3×3 matrix $\begin{array}{ccc} \mathbf{P}=0.7 & 0.3 & 0 \\ 0.1 & 0.5 & 0.4 \\ 0.15 & 0.15 & 0.7 \\ \hline \end{array}$
Option A:	0.15
Option B:	0.02
Option C:	0.6
Option D:	0.06

Piease use either of the $\mathbf{3}$ option given below while setting up the subiectivedescriptive questions

Option 1

Q.2	Solve any Four out of Six [5 marks each]
A	Differentiate between marginal and joint distributions with an example.
B	What is a Directed Acyclic Graph.
C	Explain factor graph in HMM with the help of an example.
D	Explain three goals of learning.
E	Explain Gibbs Distribution.
F	Differentiate between Rule based CPD and Tree based CPD.

Q. 3	Solve any Two Questions out of Three [10 marks each]
A	Explain Application of Bayesian Networks for Classification, Forecasting, Decision Making
B	What is HMM model? Give basic formulation of HMM? From the HMM given below, decode the sequence \{Happy, Grumpy\}
C	For the joint probability distribution table given below: a. What is the marginal distribution of X ?

	b.	What is the marginal distribution of $Y ?$
c.	What is the conditional distribution of Y given $X=2 ?$	
d.	What is the conditional distribution of X given $Y=1 ?$,	

Q. 4	Sclve any Fcur out of Six [5 marks each]
A	Explain the concept of D Separation.
B	Explain any two goals of the learning.
C	Explain maximum likelihood explanation with the help of an example.
D	Explain Gibbs parameterization with the help of an example.
E	Explain Utility. Explain Maximum Expected Utility with the help of an example
F	Explain Reduced Markov models

