T.E. (Comps) (sem-VI) (CBCGS) Machine Learning ## **University of Mumbai Examinations Summer 2022** Time: 2:30 hour Max. Marks: 80 | Q1. | Choose the correct option for following questions. All the Questions are compulsory and carry equal marks | | | | | | |-----------|---|--|--|--|--|--| | 1 | Which of the following options are true about Machine Learning? Machine learning is automatic learning based on experience Machine learning is programmed so that it learns, and past experience is not required. It can learn and improve from the past experience without being explicitly programmed. Machines can learn from past experience, but it must be explicitly programmed. | | | | | | | Option A: | 1 and 2 | | | | | | | Option B: | 2 and 4 | | | | | | | Option C: | 1 and 4 | | | | | | | Option D: | 3 and 4 | | | | | | | 2 | Which of the following is an example of reinforcement learning? | | | | | | | Option A: | Stock price prediction | | | | | | | Option B: | Sentiment analysis | | | | | | | Option C: | Customer segmentation | | | | | | | Option D: | Robot in a maze | | | | | | | 3 | In Downhill Simplex method, if $f(x)$ at the reflected point is greater than $f(x)$ at worst point (N) then the new point is obtained by | | | | | | | Option A: | Contraction | | | | | | | Option B: | Multiple Reflection | | | | | | | Option C: | Expansion | | | | | | | Option D: | Multiple contraction | | | | | | | 4 | Given X = [1 2 3 4] W = [1 1 -1 -1] compute f(net) given lambda = 0.5 using i. Bipolar continuous ii. Unipolar continuous activation function | | | | | | | Option A: | i. 0.7615 ii. 0.880 | | | | | | | Option B: | i. 0.880 ii. 0.7615 | | | | | | | Option C: | i0.7615 ii. 0.1192 | | | | | | | Option D: | i. 0.119 ii0.7615 | | | | | | | 5 | is a type of learning rule which works with a layer of Neurons. | | | | | | | Option A: | Perceptron | | | | | | | Option B: | Hebbian | | | | | | | Option C: | Windrow Hoff | | | | | | | Option D: | Winner takes all | | | | | | | 6 | Which of these statements are false with respect to the metrics in linear regression? | | | | | | | | a. For a strong linear regression R ² value should be high | | | | | | | Option B: | 0.004 | | |-----------|---|---| | Option C: | 0.04 | | | Option D: | 0.32 | | | 10 | Compute the Eigen values for matrix $A = \begin{bmatrix} 7 & 3 \\ 3 & -1 \end{bmatrix}$ | | | Option A: | $\lambda 1 = 8; \ \lambda 2 = -2$ | | | Option B: | $\lambda I = -\mathcal{E}; \lambda 2 = 2$ | | | Option C: | $\lambda I = 4; \lambda 2 = -4$ | 1 | | Option D: | $\lambda I = -4; \lambda 2 = 4$ | J | | Q2 | Solve any Two 10 marks each | |----|--| | A | Why the Support Vector Machine (SVM) is called the maximum margin classifier? Explain mathematically the formulation of margin. | | В | What is a saddle point? Minimize $f(x)=x_1^2+x_2^2+2x_1x_2$, with starting initial point [0.5, -0.1] (Perform 2 iteration only) using the steepest descent method | | C | What are the steps in designing a Machine Learning Application | | <u>Q3</u> | Solve any Two 10 marks eac | | | | | | | | |-----------|----------------------------|--------|--------------------------|--|------------|-------------------------|------------|--------------| | A | | | ng data, t
h attribut | | | ecision tree c
bute. | alculate C | Gini indexes | | | | Sr. No | Income | Defaul | ting Level | Credit Score | Location | Give Loan? | | | 18.2 | 1 | low | high | | high | bad | No | | | 5 9 3 | 2 | low | high | | high | good | No | | | | 3 | high | high | 12.4. 5.1 | high | bad | Yes | | | | 4 | medium | mediur | n | high | bad | Yes | | | | 5 | medium | low | | low | bad | No | | | | 6 | medium | low | 1.5000 | low | good | Yes | | | | 7 | high | low | | low | good | Yes | | | | 8 | low | mediur | n | high | bad | No | | | | 9 | low | low | | low | bad | No | | | | 10 | medium | mediur | n | low | bad | No | | | | 11 | low | mediur | n | !ow | good | Yes | | | | 12 | high | mediur | n | high | good | Yes | | | | 13 | high | high | | low | bad | No | | | | 14 | nıedium | mediur | n | high | good | Yes | | В | List dov
Where | | teps of Po | CA Usia | ng PCA c | ompute the t | ransforme | ed matrix of | | | | | | | 0.5 | 1.5 | | | | | *. | | | ************************************** | 0 | 0.5 | | | | | | | | **** | -0.5 | 0.25 | | | C Define logit function. Explain the importance of logit function in logistic regression with appropriate example | Q4 | Solve any Two | 10 marks each | |----|--|--------------------------------------| | A | Given | | | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | | $X = [3, 5] W = \begin{bmatrix} 1 & 2 \\ 4 & -2 \end{bmatrix}$ | | | | ute output Z using binary bipolar activation for weights y ₁ , y ₂ , w ₁₁ , w ₁₂ , w ₂₁ , w ₂₂ | | | В | Define covariance? For the given dataset, con | mpute the covariance matrix | | | $X_1 = X_2$ | | | | S S S S 2.5 2.4 | | | | 0.5 0.7 | | | | 2.2 2.9 | | | | 1.9 2.2 | | | | 3.1 3.0 | | | | 2.3 2.7 | | | | 2.0 1.6 | | | | 1.0 1.1 | | | | 1.5 1.6 | | | | 1.2 0.9 | | | С | What is the role of radial basis function in sep with XOR Example. | parating nonlinear patterns? Explain |