T.E. (Comps) (sem-VI) (CBCGS) Machine Learning

University of Mumbai Examinations Summer 2022

Time: 2:30 hour

Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks					
1	 Which of the following options are true about Machine Learning? Machine learning is automatic learning based on experience Machine learning is programmed so that it learns, and past experience is not required. It can learn and improve from the past experience without being explicitly programmed. Machines can learn from past experience, but it must be explicitly programmed. 					
Option A:	1 and 2					
Option B:	2 and 4					
Option C:	1 and 4					
Option D:	3 and 4					
2	Which of the following is an example of reinforcement learning?					
Option A:	Stock price prediction					
Option B:	Sentiment analysis					
Option C:	Customer segmentation					
Option D:	Robot in a maze					
3	In Downhill Simplex method, if $f(x)$ at the reflected point is greater than $f(x)$ at worst point (N) then the new point is obtained by					
Option A:	Contraction					
Option B:	Multiple Reflection					
Option C:	Expansion					
Option D:	Multiple contraction					
4	Given X = [1 2 3 4] W = [1 1 -1 -1] compute f(net) given lambda = 0.5 using i. Bipolar continuous ii. Unipolar continuous activation function					
Option A:	i. 0.7615 ii. 0.880					
Option B:	i. 0.880 ii. 0.7615					
Option C:	i0.7615 ii. 0.1192					
Option D:	i. 0.119 ii0.7615					
5	is a type of learning rule which works with a layer of Neurons.					
Option A:	Perceptron					
Option B:	Hebbian					
Option C:	Windrow Hoff					
Option D:	Winner takes all					
6	Which of these statements are false with respect to the metrics in linear regression?					
	a. For a strong linear regression R ² value should be high					

Option B:	0.004	
Option C:	0.04	
Option D:	0.32	
10	Compute the Eigen values for matrix $A = \begin{bmatrix} 7 & 3 \\ 3 & -1 \end{bmatrix}$	
Option A:	$\lambda 1 = 8; \ \lambda 2 = -2$	
Option B:	$\lambda I = -\mathcal{E}; \lambda 2 = 2$	
Option C:	$\lambda I = 4; \lambda 2 = -4$	1
Option D:	$\lambda I = -4; \lambda 2 = 4$	J

Q2	Solve any Two 10 marks each
A	Why the Support Vector Machine (SVM) is called the maximum margin classifier? Explain mathematically the formulation of margin.
В	What is a saddle point? Minimize $f(x)=x_1^2+x_2^2+2x_1x_2$, with starting initial point [0.5, -0.1] (Perform 2 iteration only) using the steepest descent method
C	What are the steps in designing a Machine Learning Application

<u>Q3</u>	Solve any Two 10 marks eac							
A			ng data, t h attribut			ecision tree c bute.	alculate C	Gini indexes
		Sr. No	Income	Defaul	ting Level	Credit Score	Location	Give Loan?
	18.2	1	low	high		high	bad	No
	5 9 3	2	low	high		high	good	No
		3	high	high	12.4. 5.1	high	bad	Yes
		4	medium	mediur	n	high	bad	Yes
		5	medium	low		low	bad	No
		6	medium	low	1.5000	low	good	Yes
		7	high	low		low	good	Yes
		8	low	mediur	n	high	bad	No
		9	low	low		low	bad	No
		10	medium	mediur	n	low	bad	No
		11	low	mediur	n	!ow	good	Yes
		12	high	mediur	n	high	good	Yes
		13	high	high		low	bad	No
		14	nıedium	mediur	n	high	good	Yes
В	List dov Where		teps of Po	CA Usia	ng PCA c	ompute the t	ransforme	ed matrix of
					0.5	1.5		
	*.			**************************************	0	0.5		
				****	-0.5	0.25		

C Define logit function. Explain the importance of logit function in logistic regression with appropriate example

Q4	Solve any Two	10 marks each
A	Given	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	$X = [3, 5] W = \begin{bmatrix} 1 & 2 \\ 4 & -2 \end{bmatrix}$	
	ute output Z using binary bipolar activation for weights y ₁ , y ₂ , w ₁₁ , w ₁₂ , w ₂₁ , w ₂₂	
В	Define covariance? For the given dataset, con	mpute the covariance matrix
	$X_1 = X_2$	
	S S S S 2.5 2.4	
	0.5 0.7	
	2.2 2.9	
	1.9 2.2	
	3.1 3.0	
	2.3 2.7	
	2.0 1.6	
	1.0 1.1	
	1.5 1.6	
	1.2 0.9	
С	What is the role of radial basis function in sep with XOR Example.	parating nonlinear patterns? Explain