Duration: 3hrs [Max Marks:80]

N.B.: (1) Question No 1 is Compulsory.

- (2) Attempt any three questions out of the remaining five.
- (3) All questions carry equal marks.
- (4) Assume suitable data, statistical tables if required and state it clearly.

1

- Show that the matrix $A = \begin{bmatrix} 1 & 2 & 0 \\ 2 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$ satisfies Cayley Hamilton theorem
- b Prove that $\mathbf{F} = (x+2y+4z)\mathbf{i} + (2x-3y-z)\mathbf{j} + (4x-y+2z)\mathbf{k}$ is solenoidal [5]
- c A discrete random variable has the probability distribution given below

X	0	1,50	2	3	3 ⁴ (6	5
P(X=x)	k	3k	5k	7k	9k	11k

[5]

Find k, mean

d If
$$A = \begin{bmatrix} 4 & -2 \\ 5 & -3 \end{bmatrix}$$
 then show that $A^4 = 5A + 6I$ [5]

Find eigenvalues and eigen vectors of the matrix
$$A = \begin{bmatrix} 8 & -8 & -2 \\ 4 & -3 & -2 \\ 3 & -4 & 1 \end{bmatrix}$$
 [6]

- b Using Green's theorem evaluate $\int (xy + y^2)dx + x^2dy$ where c is the closed curve of the region bounded by y = x and $y = x^2$
- C Investigate the association between the darkness of eye colour in father and son [8] from the following.

Color of son's eyes	Color of father's eyes				
	Dark	Not Dark			
Dark	48	90			
Not Dark	80	782			

3 a If
$$A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$
 then find A^{50}

b By using Big M method solve Minimize $Z = 2x_1 + 3x_2$ Subject to $x_1 + x_2 \ge 5$ [6]

$$x_1 + 2x_2 \ge 6$$
; $x_1 x_2 \ge 0$

41740

C The following table gives the number of accidents in a city during a week. Find [8] whether the accidents are uniformly distributed over a week using $\chi 2$ test.

Day	SUN	MON	TUES	WED	THU	FRI	SAT	TOTAL
No. of	13	15	9	νg.	12	10	14	84
accidents		29	7			3		679

4 a Tests made on breaking strength of 10 pieces of a metal wire gave results [6] 578,572,570,568,572,570,570,570,572,596,584 kgs. Test if the breaking strength of metal wire can be assumed to be 577 kgs?

 $(t_{tab} \text{ at } 5 \% \text{ LOS} = 1.833)$

Show that
$$A = \begin{bmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{bmatrix}$$
 is diagonalizable. Also find the diagonal form and

the transforming matrix

C Solve the following LPP by simplex method

[6]

Maximize
$$Z = 4x_1 + 8x_2 + 5x_3$$

Subject to $x_1 + 2x_2 + 3x_3 \le 18$; $2x_1 + 6x_2 + 4x_3 \le 15$; $x_1 + 4x_2 + x_3 \le 6$; $x_1, x_2, x_3 \ge 0$

]

5 a Show that the matrix A is derogatory and find its minimal polynomial A = [6]

$$\begin{bmatrix} 7 & 4 & -1 \\ 4 & 7 & -1 \\ -4 & -4 & 4 \end{bmatrix}$$

- b It is shown that the probability of an item produced by a certain machine will be defective is 0.05. If the produced items are sent to the market in packets of 20, find the number of packets containing (i)at least 3 (ii) exactly 3 (iii) at most three defective items in a consignment of 1000 packets using Poisson Distribution
- C If the vector field \overline{F} is irrotational find the constants a,b,c where $\overline{F} = (x + 2y \quad [8] + az)i + (bx 3y z)j + (4x + cy + 2z)k$.
- 6 a Use the dual simplex method to solve the following LPP

$$Min. Z = 6x_1 + x_2$$

Subject to the constraints

$$2x_1 + x_2 \ge 3$$
$$x_1 - x_2 \ge 0$$
$$x_1, x_2 \ge 0$$

41740

Paper / Subject Code: 41201 / Applied Mathematics-IV

b A group of 10 rats fed on diet A and another group of 8 rats fed on diet B recorded the following increase in weight.

Diet A: 5 6 8 1 12 4 3 9 6 10 gms

Diet B: 2 3 6 8 1 10 2 8 gms

Find if the variances are significantly different at 5% level of significance.

C Reduce the quadratic form $6x_1^2 + 3x_2^2 + 3x_3^2 - 4x_1x_2 - 2x_2x_3 + 4x_3x_1$ [8] into canonical form and hence find rank, index and signature of the matrix
