Paper / Subject Code: 32205 / Elective - I Microlectronics

T.E.(EXTC) (Sem-V) (CB)

Date-27/11/19

(3 Hours)

[Total Marks: 80]

Please check whether you have got the right question paper.

- N.B.:
- 1) Question No.1 is Compulsory.
- 2) Solve any three questions from reaming five questions.
- 3) Figures to the right indicate full marks.
- 4) Assume suitable data if required and mention the same in answer sheet.
- 1. Attempt any four

(20)

(10)

- i) Derive equation for gain of common gate amplifier
- ii) Explain how MOSFET is used as controlled resistor
- iii) Draw a mask layout of NMOS transistor
- iv) Draw simple two transistor current mirror and derive expression for output current I_O and minimum output voltage required i.e V_{ON}.
- v) Explain how inductors are fabricated in Integrated circuits.
- 2. a) What are different types of MOSFET scaling. Explain impact of scaling on MOSFET performance parameters such as I_{DS} , Area, Power and delay with the help of appropriate equations.
 - b) Explain how cascode current mirror improves performance of simple current mirror. Also derive expression for output resistance and minimum output voltage required i,e V_{omin} for proper operation of cascode current mirror.
- 3. a) Explain DC transfer characteristics of MOS differential Amplifier by deriving appropriate equations. (10)
 - b) Explain with proper diagram class C power Amplifier. (10)
- 4. a) Explain NMOS fabrication process with suitable diagrams. (10)
 - b) Draw and explain the working of common source amplifier with NMOS diode connected load. Derive expression for voltage gain and output voltage swing.
- 5. a) Design common source resistive load amplifier to meet following specification. (10) $Av \ge 10, \text{ output swing} = 3V, \text{ Pdmax} \le 5\text{mW}.$ Use $V_{DD} = 5V$, $\mu n \text{Cox} = 150\mu A/V^2$, $\lambda = 0.01 \text{ V}^{-1}$, $V_{TN} = 1V$.

77982

b) For the circuit shown below $V^+ = 10V$, $V^- = 0V$. Transistors parameters are V_{TN} (10) = 2V, $\mu n Cox = 40 \mu A/V^2$ and $\lambda = 0$. Design the circuit such that $I_{REF} = 0.5$ mA, $I_O = 0.2$ mA and M2 remains biased in saturation region for $V_{DS2} \ge 1V$.

6. Write short notes on any four

(20)

- i) Bias Independent current source
- ii) Class B power amplifier using MOSFET
- iii) Fabrication of transforms
- iv) Fabrication of variable capacitor
- v) Short channel effects