Paper / Subject Code: 39401 / APPLIED ÂMATHEMATICS - IV Date -4/12/19

S.E. (IT) (SemI-IV) (CBSGS) (R-2012)

		Time Dur	ation: 3Hr	•		Total M	arks: 80	
	N.B.:1) Qu 2) Att 3) Us 4) Fig	estion no. l empt any the of statistic gures to the	is compulse free questic cal tables pe right indica	ory. ons from Q. ermitted. te full marl	2to Q.6. xs.			
Q1. a)	Evaluate $\int_C (z - z^2) dz$, where C is the upper half of circle $ z = 1$.							
b)	If $A = \begin{bmatrix} 2 & 1 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$	$\begin{bmatrix} -2\\ 4\\ -2 \end{bmatrix}$, fi	nd the Eige	n values of	$A^2 - 2A + $	Ι.		[5]
c)	State whether the following statement is true or false with reasoning: "The line of regression between x and y are parallel to the line of regression between $2x$ and $2y$."							
d)	Find the du Maximize Subject to	al of the fol $z = 3x_1 + x_1 - x_2 + -3x_1 + 2x_2 + 2x_1 + x_2 - x_1 + x_2 - x_1 + x_2 - x_1 + x_2 - x_1 + x_2 + x_3 + 2x_1 + x_2 + x_3 + x_1 + x_2 + x_2 + x_3 + x_3 + x_1 + x_2 + x_3 + x_3 + x_1 + x_2 + x_3 + x_2 + x_3 + x_4 + x_3 + x_3 + x_4 + x_3 + x_4 + x_4 + x_5 +$	llowing L.P $17x_2 + 9x$ $x_3 \ge 3$ $x_3 \le 1$ $-5x_3 = 1$ ≥ 0	.P. 3				[5]
Q2. a)	Evaluate ∫	$\frac{1}{-3(-1)}d$	z , where c	is the circle	z =2.			[6]
b)	Show that t	he matrix Δ	$\mathbf{A} = \begin{bmatrix} 1 & 2\\ 2 & 3 \end{bmatrix}$	$\begin{bmatrix} 2 & 3 \\ 3 & 4 \end{bmatrix}$ is not	on-derogator	y .		[6]
c)	For a normal variate X with mean 2.5 and standard deviation 3.5, find the probability that (i) $2 \le X \le 4.5$, (ii) $-1.5 \le X \le 5.3$.							[8]
Q3. a)	Find the expectation of number of failures preceding the first success in an infinite series of independent trials with constant probabilities p and q of success and failure respectively.							[6]
b)	Solve the following L.P.P. by simplex method Maximize $z = 3x_1 + 2x_2$ Subject to $x_1 + x_2 \le 4$ $x_1 - x_2 \le 2$ $x_2, x_3 \ge 0$							[6]
c)	Expand $f(z) = \frac{2-z^2}{z(1-z)(2-z)}$ about $Z = 0$ indicating the region of convergence in each case.							[8]
Q4. a)	A biased coin is tossed n times. Prove that the probability of getting even number of heads is $0.5[1 + (q - p)^n]$.							[6]
b)	Calculate the coefficient of correlation between X and Y from the following data.							[6]
	X	100	200	300	400	500		
	\mathbf{V}	30	40	50	60	60		

67959

Page 1 of 2

0FEF08902C0543F1E6078AB44701C59D

Paper / Subject Code: 39401 / APPLIED ÂMATHEMATICS - IV

Show that the matrix $A = \begin{bmatrix} -9 & 4 & 4 \\ -8 & 3 & 4 \\ -16 & 8 & 7 \end{bmatrix}$ c) [8] is diagonalizable. Find the transforming matrix M and the diagonal form D. **O5.a**) Can it be concluded that the average life-span of an Indian is more than 70 years. [6] if a random sample of 100 Indians has an average life span of 71.8 years with standard deviation of 8.9 years? Evaluate $\int_0^\infty \frac{1}{x^4+1} dx$, using Cauchy's residue theorem. **b**) [6] c) Using the Kuhn – Tucker conditions, solve the following N.L.P.P. [8] Minimize $z = 7x_1^2 + 5x_2^2 - 6x_1$ Subject to $x_1 + 2x_2 \le 10$ $x_1 + 3x_2 \le 9$ $x_1, x_2 \ge 0$ Q6.a) A die was thrown 132 times and the following frequencies were observed. [6] No. obtained 1 2 3 5 4 6 Total Frequency 15 20 25 15 29 28 132 Test the hypothesis that the die is unbiased. b) If two independent random samples of sizes 15 and 8 have respectively the [6] following means and population standard deviations, $\overline{X_1} = 980 \quad \overline{X_2} = 1012$ $\sigma_1 = 75$ $\sigma_2 = 80$ Test the hypothesis that $\mu_1 = \mu_2$ at 5% level of significance. b) Using Penalty (Big-M) method solve the following L.P.P. [8] Maximise $z = 3x_1 - x_2$ Subject to $2x_1 + x_2 \le 2$ $x_1 + 3x_2 \ge 3$ $x_2 \leq 4$ $x_1, x_2 \ge 0$

Page 2 of 2