Paper / Subject Code: 39401 / APPLIED ÂMMATHEMATICS - IV
S.E. (IT) (Se rIV) (CBSGS) (R-2O12)

Time Duration: 3 Hr

N.B.:1) Question no.l is compulsory.
2) Attempt any three questions from Q.2to Q.6.
3) Use of statistical tables permitted.
4) Figures to the right indicate full marks.

Q1. a) Evaluate $\int_{C}\left(z-z^{2}\right) d z$, where C is the upper half of circle $|z|=1$.
b)

If $\mathrm{A}=\left[\begin{array}{ccc}2 & 1 & -2 \\ 0 & 1 & 4 \\ 0 & 0 & 3\end{array}\right]$, find the Eigen values of $A^{2}-2 A+I$.
c) State whether the following statement is true or false with reasoning: "The line of regression between x and y are parallel to the line of regression between $2 x$ and 2 y ."
d) Find the dual of the following L.P.P.

Maximize $z=3 x_{1}+17 x_{2}+9 x_{3}$
Subject to $x_{1}-x_{2}+x_{3} \geq 3$

$$
-3 x_{1}+2 x_{3} \leq 1
$$

$$
2 x_{1}+x_{2}-5 x_{3}=1
$$

$$
x_{1}, x_{2}, x_{3} \geq 0
$$

Q2. a) Evaluate $\int_{C} \frac{1}{z^{3}(z+4)} d z$, where c is the circle $|z|=2$.
b)

Show that the matrix $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 5\end{array}\right]$ is non-derogatory.
c) For a normal variate X with mean 2.5 and standard deviation 3.5 , find the probability that (i) $2 \leq X \leq 4.5$, (ii) $-1.5 \leq X \leq 5.3$.

Q3. a) Find the expectation of number of failures preceding the first success in an infinite series of independent trials with constant probabilities p and q of success and failure respectively.
b) Solve the following L.P.P. by simplex method

Maximize $z=3 x_{1}+2 x_{2}$
Subject to $x_{1}+x_{2} \leq 4$

$$
x_{1}-x_{2} \leq 2
$$

c) Expand $f(z)=\frac{2-z^{2}}{z(1-z)(2-z)}$ about $Z=0$ indicating the region of convergence in each case.

Q4. a) A biased coin is tossed n times. Prove that the probability of getting even number of heads is $0.5\left[1+(q-p)^{n}\right]$.
b) Calculate the coefficient of correlation between X and Y from the following data.

$$
x_{1}, x_{2} \geq 0
$$

X	100	200	300	400	500
Y	30	40	50	60	60

c)

Show that the matrix $A=\left[\begin{array}{ccc}-9 & 4 & 4 \\ -8 & 3 & 4 \\ -16 & 8 & 7\end{array}\right]$ is diagonalizable. Find the transforming matrix M and the diagonal form D .

Q5.a) Can it be concluded that the average life-span of an Indian is more than 70 years, if a random sample of 100 Indians has an average life span of 71.8 years with standard deviation of 8.9 years?
b) Evaluate $\int_{0}^{\infty} \frac{1}{x^{4}+1} d x$, using Cauchy's residue theorem.
c) Using the Kuhn - Tucker conditions, solve the following N.L.P.P.

Minimize $z=7 x_{1}{ }^{2}+5 x_{2}{ }^{2}-6 x_{1}$
Subject to $x_{1}+2 x_{2} \leq 10$
$x_{1}+3 x_{2} \leq 9$
$x_{1}, x_{2} \geq 0$
Q6.a) A die was thrown 132 times and the following frequencies were observed.

No. obtained	1	2	3	4	5	6	Total
Frequency	15	20	25	15	29	28	132

Test the hypothesis that the die is unbiased.
b) If two independent random samples of sizes 15 and 8 have respectively the following means and population standard deviations,
$\overline{X_{1}}=980 \quad \overline{X_{2}}=1012$
$\sigma_{1}=75 \quad \sigma_{2}=80$
Test the hypothesis that $\mu_{1}=\mu_{2}$ at 5% level of significance.
b) Using Penalty ($\mathrm{Big}-\mathrm{M}$) method solve the following L.P.P.

Maximise $z=3 x_{1}-x_{2}$
Subject to $2 x_{1}+x_{2} \leq 2$

$$
x_{1}+3 x_{2} \geq 3
$$

$$
x_{2} \leq 4
$$

$$
x_{1}, x_{2} \geq 0
$$

